ﻻ يوجد ملخص باللغة العربية
Phase engineering techniques are used to control the dynamics of long-bosonic-Josephson-junction arrays built by linearly coupling Bose-Einstein condensates. Just at the middle point of the underlying discrete energy band of the system, unlocked-relative-phase states are shown to be stationary along with the locked-relative-phase Bloch waves. In finite, experimentally-feasible systems, such states find ranges of dynamical stability that depend on the ratio of coupling to interaction energy. The same ratio determines different decay regimes, which include the recurrence of staggered-soliton trains in the condensates around Josephson loop currents at the junctions. These transient solitons are also found in their stationary configurations, which provide striped-density states by means of either dark-soliton or bright-soliton trains. Additionally, the preparation of maximally out-of-phase (or splay) states is demonstrated to evolve into an oscillation of the uniform density of the condensates that keeps constant the total density of the system and robust against noise at low coupling.
For the observation of Bose-Einstein condensation, excitons in cuprous oxide are regarded as promising candidates due to their large binding energy and long lifetime. High particle densities may be achieved by entrapment in a stress induced potential
Generation of different nonequilibrium states in trapped Bose-Einstein condensates is studied by numerically solving nonlinear Schrodinger equation. Inducing nonequilibrium states by shaking the trap, the following states are created: weak nonequilib
We investigate flow properties of immiscible Bose-Einstein condensates composed of two different Zeeman spin states of 87Rb. Spatially overlapping two condensates in the optical trap are prepared by application of a resonant radio frequency pulse, an
Vortices are expected to exist in a supersolid but experimentally their detection can be difficult because the vortex cores are localized at positions where the local density is very low. We address here this problem by performing numerical simulatio
The problem of understanding how a coherent, macroscopic Bose-Einstein condensate (BEC) emerges from the cooling of a thermal Bose gas has attracted significant theoretical and experimental interest over several decades. The pioneering achievement of