ترغب بنشر مسار تعليمي؟ اضغط هنا

Unlocked-relative-phase states in arrays of Bose-Einstein condensates

147   0   0.0 ( 0 )
 نشر من قبل Antonio Mu\\~noz Mateo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase engineering techniques are used to control the dynamics of long-bosonic-Josephson-junction arrays built by linearly coupling Bose-Einstein condensates. Just at the middle point of the underlying discrete energy band of the system, unlocked-relative-phase states are shown to be stationary along with the locked-relative-phase Bloch waves. In finite, experimentally-feasible systems, such states find ranges of dynamical stability that depend on the ratio of coupling to interaction energy. The same ratio determines different decay regimes, which include the recurrence of staggered-soliton trains in the condensates around Josephson loop currents at the junctions. These transient solitons are also found in their stationary configurations, which provide striped-density states by means of either dark-soliton or bright-soliton trains. Additionally, the preparation of maximally out-of-phase (or splay) states is demonstrated to evolve into an oscillation of the uniform density of the condensates that keeps constant the total density of the system and robust against noise at low coupling.



قيم البحث

اقرأ أيضاً

For the observation of Bose-Einstein condensation, excitons in cuprous oxide are regarded as promising candidates due to their large binding energy and long lifetime. High particle densities may be achieved by entrapment in a stress induced potential . We consider a multi-component gas of interacting para- and orthoexcitons in cuprous oxide confined in a three-dimensional potential trap. Based on the Hartree-Fock-Bogoliubov theory, we calculate density profiles as well as decay luminescence spectra which exhibit signatures of the separation of the Bose-condensed phases.
157 - V.I. Yukalov , A.N. Novikov , 2017
Generation of different nonequilibrium states in trapped Bose-Einstein condensates is studied by numerically solving nonlinear Schrodinger equation. Inducing nonequilibrium states by shaking the trap, the following states are created: weak nonequilib rium, the state of vortex germs, the state of vortex rings, the state of straight vortex lines, the state of deformed vortices, vortex turbulence, grain turbulence, and wave turbulence. A characterization of nonequilibrium states is advanced by introducing effective temperature, Fresnel number, and Mach number.
We investigate flow properties of immiscible Bose-Einstein condensates composed of two different Zeeman spin states of 87Rb. Spatially overlapping two condensates in the optical trap are prepared by application of a resonant radio frequency pulse, an d then the magnetic field gradient is applied in order to produce the atomic flow. We find that the spontaneous multiple domain formation arising from the immiscible nature drastically changes the fluidity. The homogeneously overlapping condensates readily separate under the magnetic field gradient, and they form stable configuration composed of the two layers. In contrast, the relative flow between two condensates are largely suppressed in the case where the magnetic field gradient is applied after spontaneous domain formation.
Vortices are expected to exist in a supersolid but experimentally their detection can be difficult because the vortex cores are localized at positions where the local density is very low. We address here this problem by performing numerical simulatio ns of a dipolar Bose-Einstein Condensate (BEC) in a pancake confinement at $T=0$ K and study the effect of quantized vorticity on the phases that can be realized depending upon the ratio between dipolar and short-range interaction. By increasing this ratio the system undergoes a spontaneous density modulation in the form of an ordered arrangement of multi-atom droplets. This modulated phase can be either a supersolid (SS) or a normal solid (NS). In the SS state droplets are immersed in a background of low-density superfluid and the system has a finite global superfluid fraction resulting in non-classical rotational inertia. In the NS state no such superfluid background is present and the global superfluid fraction vanishes. We propose here a protocol to create vortices in modulated phases of dipolar BEC by freezing into such phases a vortex-hosting superfluid (SF) state. The resulting system, depending upon the interactions strengths, can be either a SS or a NS To discriminate between these two possible outcome of a freezing experiment, we show that upon releasing of the radial harmonic confinement, the expanding vortex-hosting SS shows tell-tale quantum interference effects which display the symmetry of the vortex lattice of the originating SF, as opposed to the behavior of the NS which shows instead a ballistic radial expansion of the individual droplets. Such markedly different behavior might be used to prove the supersolid character of rotating dipolar condensates.
The problem of understanding how a coherent, macroscopic Bose-Einstein condensate (BEC) emerges from the cooling of a thermal Bose gas has attracted significant theoretical and experimental interest over several decades. The pioneering achievement of BEC in weakly-interacting dilute atomic gases in 1995 was followed by a number of experimental studies examining the growth of the BEC number, as well as the development of its coherence. More recently there has been interest in connecting such experiments to universal aspects of nonequilibrium phase transitions, in terms of both static and dynamical critical exponents. Here, the spontaneous formation of topological structures such as vortices and solitons in quenched cold-atom experiments has enabled the verification of the Kibble-Zurek mechanism predicting the density of topological defects in continuous phase transitions, first proposed in the context of the evolution of the early universe. This chapter reviews progress in the understanding of BEC formation, and discusses open questions and future research directions in the dynamics of phase transitions in quantum gases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا