ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersal of protoplanetary disks by the combination of magnetically driven and photoevaporative winds

127   0   0.0 ( 0 )
 نشر من قبل Masanobu Kunitomo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the roles of magnetically driven disk wind (MDW) and thermally driven photoevaporative wind (PEW) in the long-time evolution of protoplanetary disks. We start simulations from the early phase in which the disk mass is $0.118,{mathrm{M}_{odot}}$ around a $1,{mathrm{M}_{odot}}$ star and track the evolution until the disk is completely dispersed. We incorporate the mass loss by PEW and the mass loss and magnetic braking (wind torque) by MDW, in addition to the viscous accretion, viscous heating, and stellar irradiation. We find that MDW and PEW respectively have different roles: magnetically driven wind ejects materials from an inner disk in the early phase, whereas photoevaporation has a dominant role in the late phase in the outer ($gtrsim1,$au) disk. The disk lifetime, which depends on the combination of MDW, PEW, and viscous accretion, shows a large variation of $sim1$-$20,$Myr; the gas is dispersed mainly by the MDW and the PEW in the cases with a low viscosity and the lifetime is sensitive to the mass-loss rate and torque of the MDW, whereas the lifetime is insensitive to these parameters when the viscosity is high. Even in disks with very weak turbulence, the cooperation of MDW and PEW enables the disk dispersal within a few Myr.



قيم البحث

اقرأ أيضاً

We aim to understand the effect of stellar evolution on the evolution of protoplanetary disks. We focus in particular on the disk evolution around intermediate-mass (IM) stars, which evolve more rapidly than low-mass ones. We numerically solve the lo ng-term evolution of disks around 0.5-5 solar-mass stars considering viscous accretion and photoevaporation (PE) driven by stellar far-ultraviolet (FUV), extreme-ultraviolet (EUV), and X-ray emission. We also take stellar evolution into account and consider the time evolution of the PE rate. We find that the FUV, EUV, and X-ray luminosities of IM stars evolve by orders of magnitude within a few Myr along with the time evolution of stellar structure, stellar effective temperature, or accretion rate. Therefore, the PE rate also evolves with time by orders of magnitude, and we conclude that stellar evolution is crucial for the disk evolution around IM stars.
We discovered a new growth mode of dust grains to km-sized bodies in protoplanetary disks that evolve by viscous accretion and magnetically driven disk winds (MDWs). We solved an approximate coagulation equation of dust grains with time-evolving disk s that consist of both gas and solid components by a one-dimensional model. With the grain growth, all solid particles initially drift inward toward the central star by the gas drag force. However, the radial profile of gas pressure, $P$, is modified by the MDW that disperses the gas in an inside-out manner. Consequently, a local concentration of solid particles is created by the converging radial flux of drifting dust grains at the location with the convex upward profile of $P$. When the dimensionless stopping time, ${rm St}$, there exceeds unity, the solid particles spontaneously reach the growth dominated state because of the positive feedback between the suppressed radial drift and the enhanced accumulation of dust particles that drift from the outer part. Once the solid particles are in the drift limited state, the above-mentioned condition of ${rm St} gtrsim 1$ for the dust growth is equivalent with begin{equation} Sigma_{rm d}/Sigma_{rm g}gtrsim eta, onumber end{equation} where $Sigma_{rm d}/Sigma_{rm g}$ is the dust-to-gas surface-density ratio and $eta$ is dimensionless radial pressure-gradient force. As a consequence of the successful growth of dust grains, a ring-like structure containing planetesimal-sized bodies is formed at the inner part of the protoplanetary disks. Such a ring-shaped concentration of planetesimals is expected to play a vital role in the subsequent planet formation.
We present a model for the dispersal of protoplanetary disks by winds from either the central star or the inner disk. These winds obliquely strike the flaring disk surface and strip away disk material by entraining it in an outward radial-moving flow at the wind-disk interface which lies several disk scale heights above the mid-plane. The disk dispersal time depends on the entrainment velocity at which disk material flows into this turbulent shear layer interface. If the entrainment efficiency is ~10% of the local sound speed, a likely upper limit, the dispersal time at 1 AU is ~6 Myr for a disk with a surface density of 10^3 g cm^{-2}, a solar mass central star, and a wind with an outflow rate 10^{-8} Msun/yr and terminal velocity 200 km/s. When compared to photoevaporation and viscous evolution, wind stripping can be a dominant mechanism only for the combination of low accretion rates (< 10^{-8} Msun/yr) and wind outflow rates approaching these accretion rates. This case is unusual since generally outflow rates are < 0.1 of of accretion rates.
We present a novel mechanism for the outward transport of crystalline dust particles: the outward radial drift of pebbles. The dust ring structure is frequently observed in protoplanetary disks. One of the plausible mechanisms of the formation of dus t rings is the accumulation of pebbles around the pressure maximum, which is formed by the mass loss due to magnetically driven disk winds. In evolving protoplanetary disks due to magnetically driven disk winds, dust particles can migrate outwardly from the crystallization front to the pressure maximum by radial drift. We found that the outward radial drift process can transport crystalline dust particles efficiently when the radial drift timescale is shorter than the advection timescale. Our model predicts that the crystallinity of silicate dust particles could be as high as 100% inside the dust ring position.
Photoevaporation and magnetically driven winds are two independent mechanisms to remove mass from protoplanetary disks. In addition to accretion, the effect of these two principles acting concurrently could be significant and the transition between t hose two has not been extensively studied and quantified in the literature yet. In order to contribute to the understanding of disk winds, we present the phenomena emerging in the framework of two-dimensional axisymmetric, non-ideal magnetohydrodynamic simulations including EUV-/ X-ray driven photoevaporation. Of particular interest are the examination of the transition region between photoevaporation and magnetically driven wind, the possibility of emerging magneto-centrifugal wind effects, as well as the morphology of the wind itself depending on the strength of the magnetic field. We use the PLUTO code in a 2.5D axisymmetric configuration with additional treatment of EUV-/ X-ray heating and dynamic ohmic diffusion based on a semi-analytical chemical model. We identify the transition between both outflow types to occur for values of the initial plasma beta $beta geq 10^7$, while magnetically driven winds generally outperform photoevaporation for stronger fields. In our simulations we observe irregular and asymmetric outflows for stronger magnetic fields. In the weak field regime the photoevaporation rates are slightly lowered by perturbations of the gas density in the inner regions of the disk. Overall, our results predict a wind with a lever arm smaller than 1.5, consistent with a hot magneto-thermal wind. Stronger accretion flows are present for values of $beta < 10^7$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا