ترغب بنشر مسار تعليمي؟ اضغط هنا

The Vertical Logic of Hamiltonian Methods (Part 1)

51   0   0.0 ( 0 )
 نشر من قبل Christian Baumgarten
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Baumgarten




اسأل ChatGPT حول البحث

We discuss the key role that Hamiltonian notions play in physics. Five examples are given that illustrate the versatility and generality of Hamiltonian notions. The given examples concern the interconnection between quantum mechanics, special relativity and electromagnetism. We demonstrate that a derivation of these core concepts of modern physics requires little more than a proper formulation in terms of classical Hamiltonian theory.

قيم البحث

اقرأ أيضاً

We show that Gutzwillers characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian can be extended to a wide class of potential models of standard form thr ough definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model when a transition is made to the dual manifold, and the geodesics in the dual space coincide with the orbits of the Hamiltonian potential model. We therefore find a direct geometrical description of the time development of a Hamiltonian potential model. The second covariant derivative of the geodesic deviation in this dual manifold generates a dynamical curvature, resulting in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions giving, in particular, detailed results for a potential obtained from a fifth order expansion of a Toda lattice Hamiltonian.
We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture) that can be put into correspondence with the usual Hamilton-Lagrange mechan ics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamilton-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the original Hamiltonian motion.
49 - M.P. Seevinck 2011
Translation of Die Logik Nicht Gleichzeitig Entscheidbarer Aussagen by Ernst Specker, Dialectica, vol. 14, 239 - 246 (1960).
We propose a family of optimization methods that achieve linear convergence using first-order gradient information and constant step sizes on a class of convex functions much larger than the smooth and strongly convex ones. This larger class includes functions whose second derivatives may be singular or unbounded at their minima. Our methods are discretizations of conformal Hamiltonian dynamics, which generalize the classical momentum method to model the motion of a particle with non-standard kinetic energy exposed to a dissipative force and the gradient field of the function of interest. They are first-order in the sense that they require only gradient computation. Yet, crucially the kinetic gradient map can be designed to incorporate information about the convex conjugate in a fashion that allows for linear convergence on convex functions that may be non-smooth or non-strongly convex. We study in detail one implicit and two explicit methods. For one explicit method, we provide conditions under which it converges to stationary points of non-convex functions. For all, we provide conditions on the convex function and kinetic energy pair that guarantee linear convergence, and show that these conditions can be satisfied by functions with power growth. In sum, these methods expand the class of convex functions on which linear convergence is possible with first-order computation.
102 - Gabriele Carcassi 2013
We put forth the idea that Hamiltons equations coincide with deterministic and reversible evolution. We explore the idea from five different perspectives (mathematics, measurements, thermodynamics, information theory and state mapping) and we show ho w they in the end coincide. We concentrate on a single degree of freedom at first, then generalize. We also discuss possible philosophical reasons why the laws of physics can only describe such processes, even if others must exist.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا