ترغب بنشر مسار تعليمي؟ اضغط هنا

High temperature thermal cycling effect on the irreversible responses of lattice structure, magnetic properties and electrical conductivity in Co$_{2.75}$Fe$_{0.25}$O$_{4+delta}$ spinel oxide

58   0   0.0 ( 0 )
 نشر من قبل R.N Bhowmik Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report high temperature synchrotron X-ray diffraction (SXRD), dc magnetization and current-voltage (I-V) characteristics for the samples of Co$_{2.75}$Fe$_{0.25}$O$_4$ ferrite. The material was prepared by chemical reaction of the Fe and Co nitrate solutions at pH = 11 and subsequent annealing at temperatures 200 0C, 500 0C and 900 0C. The measurements were performed by cycling the temperature from 300 K to high temperature (warming mode) and return back to 300 K (cooling mode). The SXRD patterns indicated a fine bi-phased cubic spinel structure in the highly Co rich spinel oxide. Magnetization curves showed intrinsic ferrimagnetic features and defect induced additional ferromagnetic phase at higher temperatures. Electrical conductivity showed thermal hysteresis loop between warming and cooling modes of temperature variation. The samples exhibited new information on the irreversibility phenomena of lattice structure, magnetization and electrical conductivity on cycling the measurement temperatures.



قيم البحث

اقرأ أيضاً

The low temperature lattice structure and magnetic properties of Co$_{2.75}$Fe$_{0.25}$O$_4$ ferrite have been investigated using experimental results from synchrotron x-ray diffraction (SXRD), dc magnetization, ac susceptibility, neutron diffraction and neutron depolarization techniques. The samples have been prepared by chemical co-precipitation of the Fe and Co nitrates solution in high alkaline medium and subsequent thermal annealing of the precipitates in the temperature range of 200- 900 $^circ$C. Rietveld refinement of the SXRD patterns at room temperature indicated two-phased cubic spinel structure for the samples annealed at temperatures 200-600 $^circ$C. The samples annealed at temperatures 700 $^circ$C and 900 $^circ$C (CF90) have been best fitted with single phased lattice structure. Refinement of the neutron diffraction patterns in the temperature range of 5-300 K confirmed antiferromagnetic (AFM) Co$_3$O$_4$ and ferrimagnetic (FIM) Co$_{2.75}$Fe$_{0.25}$O$_4$ phases for the sample annealed at 600 $^circ$C and single FIM phase of Co$_{2.75}$Fe$_{0.25}$O$_4$ for the CF90 sample. Magnetic measurements have shown a non-equilibrium magnetic structure, consisting of the high temperature FIM phase and low temperature AFM phase. The magnetic phases are sensitive to magnetic fields, where high temperature phase is suppressed at higher magnetic fields by enhancing the low temperature AFM phase, irrespective of annealing temperature of the samples.
We report the electrical resistivity, thermoelectric power, and thermal conductivity of single-crystalline and sintered samples of the 5d pyrochlore oxide CsW2O6. The electrical resistivity of the single crystal is 3 mohm cm at 295 K and gradually in creases with decreasing temperature above 215 K (Phase I). The thermoelectric power of the single-crystalline and sintered samples shows a constant value of approximately -60 uV K-1 in Phase I. These results reflect that the electron conduction by W 5d electrons in Phase I is incoherent and in the hopping regime, although a band gap does not open at the Fermi level. The thermal conductivity in Phase I of both samples is considerably low, which might be due to the rattling of Cs+ ions. In Phase II below 215 K, the electrical resistivity and the absolute value of thermoelectric power of both samples strongly increase with decreasing temperature, corresponding to a transition to a semiconducting state with a band gap open at the Fermi level, while the thermal conductivity in Phase II is smaller than that in Phase I.
The ferrimagnetic spinel oxide Zn(x)Fe(3-x)O(4) combines high Curie temperature and spin polarization with tunable electrical and magnetic properties, making it a promising functional material for spintronic devices. We have grown epitaxial thin film s with 0<=x<=0.9 on MgO(001) substrates with excellent structural properties both in pure Ar atmosphere and an Ar/O2 mixture by laser molecular beam epitaxy. We find that the electrical conductivity and the saturation magnetization can be tuned over a wide range during growth. Our extensive characterization of the films provides a clear picture of the underlying physics of this spinel ferrimagnet with antiparallel Fe moments on the A and B sublattice: (i) Zn substitution removes both Fe3+ moments from the A sublattice and itinerant charge carriers from the B sublattice, (ii) growth in finite oxygen partial pressure generates Fe vacancies on the B sublattice also removing itinerant charge carriers, and (iii) application of both Zn substitution and excess oxygen results in a compensation effect as Zn substitution partially removes the Fe vacancies. A decrease (increase) of charge carrier density results in a weakening (strengthening) of double exchange and thereby a decrease (increase) of conductivity and the saturation magnetization. This scenario is confirmed by the observation that the saturation magnetization scales with the longitudinal conductivity. The combination of tailored films with semiconductor materials such as ZnO in multi-functional heterostructures seems to be particularly appealing.
We study the low-temperature electrical and thermal conductivity of CoSi and Co$_{1-x}$M$_x$Si alloys (M = Fe, Ni; $x leq$ 0.06). Measurements show that the low-temperature electrical conductivity of Co$_{1-x}$Fe$_{x}$Si alloys decreases at $x > $ 0. 01 by an order of magnitude compared with that of pure CoSi. It was expected that both the lattice and electronic contributions to thermal conductivity would decrease in the alloys. However, our experimental results revealed that at temperatures below 20K the thermal conductivity of Fe- and Ni-containing alloys is several times larger than that of pure CoSi. We discuss possible mechanisms of the thermal conductivity enhancement. The most probable one is related to the dominant scattering of phonons by charge carriers. We propose a simple theoretical model that takes into account the complex semimetallic electronic structure of CoSi with nonequivalent valleys, and show that it explains well the increase of the lattice thermal conductivity with increasing disorder and the linear temperature dependence of the thermal conductivity in the Co$_{1-x}$Fe$_x$Si alloys below 20K.
In contrast to bulk materials, nanoscale crystal growth is critically influenced by size- and shape-dependent properties. However, it is challenging to decipher how stoichiometry, in the realm of mixed-valence elements, can act to control physical pr operties, especially when complex bonding is implicated by short and long-range ordering of structural defects. Here, solution-grown iron-oxide nanocrystals (NCs) of the pilot wustite system are found to convert into iron-deficient rock-salt and ferro-spinel sub-domains, but attain a surprising tetragonally distorted local structure. Cationic vacancies within chemically uniform NCs are portrayed as the parameter to tweak the underlying properties. These lattice imperfections are shown to produce local exchange-anisotropy fields that reinforce the nanoparticles magnetization and overcome the influence of finite-size effects. The concept of atomic-scale defect control in subcritical size NCs, aspires to become a pathway to tailor-made properties with improved performance for hyperthermia heating over defect-free NCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا