ﻻ يوجد ملخص باللغة العربية
The discovery of a persistent radio source coincident with the first repeating fast radio burst, FRB 121102, and offset from the center of its dwarf host galaxy has been used as evidence for a link with young millisecond magnetars born in superluminous supernovae (SLSNe) or long-duration gamma-ray bursts (LGRBs). A prediction of this scenario is that compact radio sources offset from the centers of dwarf galaxies may serve as signposts for at least some FRBs. Recently, Reines et al. 2019 presented the discovery of 20 such radio sources in nearby ($zlesssim 0.055$) dwarf galaxies, and argued that these cannot be explained by emission from HII regions, normal supernova remnants, or normal radio supernovae. Instead, they attribute the emission to accreting wandering massive black holes. Here, we explore the alternative possibility that these sources are analogs of FRB 121102. We compare their properties -- radio luminosities, spectral energy distributions, light curves, ratios of radio-to-optical flux, and spatial offsets -- to FRB 121102, a few other well-localized FRBs, and potentially related systems, and find that these are all consistent as arising from the same population. We further compare their properties to the magnetar nebula model used to explain FRB 121102, as well as to theoretical off-axis LGRB light curves, and find overall consistency. Finally, we find a consistent occurrence rate relative to repeating FRBs and LGRBs. We outline key follow-up observations to further test these possible connections.
Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i
We investigate low-density accretion flows onto massive black holes (BHs) with masses of $gtrsim 10^5~M_odot$ orbiting around in the outskirts of their host galaxies, performing three-dimensional hydrodynamical simulations. Those wandering BHs are po
The event rate, energy distribution, and time-domain behaviour of repeating fast radio bursts (FRBs) contains essential information regarding their physical nature and central engine, which are as yet unknown. As the first precisely-localized source,
We report on the discovery of FRB 20200120E, a repeating fast radio burst (FRB) with low dispersion measure (DM), detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB project. The source DM of 87.82 pc cm$^{-3}$ is the lowest re
Fast radio bursts (FRBs) are millisecond transients of unknown origin(s) occurring at cosmological distances. Here we, for the first time, show time-integrated-luminosity functions and volumetric occurrence rates of non-repeating and repeating FRBs a