ترغب بنشر مسار تعليمي؟ اضغط هنا

Deciphering the Archaeological Record: Cosmological Imprints of Non-Minimal Dark Sectors

58   0   0.0 ( 0 )
 نشر من قبل Keith R. Dienes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many proposals for physics beyond the Standard Model give rise to a dark sector containing many degrees of freedom. In this work, we explore the cosmological implications of the non-trivial dynamics which may arise within such dark sectors, focusing on decay processes which take place entirely among the dark constituents. First, we demonstrate that such decays can leave dramatic imprints on the resulting dark-matter phase-space distribution. In particular, this distribution need not be thermal -- it can even be multi-modal, exhibiting a non-trivial pattern of peaks and troughs as a function of momentum. We then proceed to show how these features can induce modifications to the matter power spectrum. Finally, we assess the extent to which one can approach the archaeological inverse problem of deciphering the properties of an underlying dark sector from the matter power spectrum. Indeed, one of the main results of this paper is a remarkably simple conjectured analytic expression which permits the reconstruction of many of the important features of the dark-matter phase-space distribution directly from the matter power spectrum. Our results therefore provide an interesting toolbox of methods for learning about, and potentially constraining, the features of non-minimal dark sectors and their dynamics in the early universe.

قيم البحث

اقرأ أيضاً

It has been recently pointed out that coupled dark matter-dark energy systems suffer from non-adiabatic instabilities at early times and large scales. We show how coupled models free from non-adiabatic instabilities can be identified as a function of a generic coupling Q and of the dark energy equation of state w. In our analysis, we do not refer to any particular cosmic field. We also confront a viable class of model in which the interaction is directly proportional to the dark energy density to recent cosmological data. In that framework, we show the correlations between the dark coupling and several cosmological parameters allowing to e.g.larger neutrino mass than in uncoupled models.
A preponderance of astrophysical and cosmological evidence indicates that the universe contains not only visible matter but also dark matter. In order to suppress the couplings between the dark and visible sectors, a standard assumption is that these two sectors communicate only through a mediator. In this paper we make a simple but important observation: if the dark sector contains multiple components with similar quantum numbers, then this mediator also generically gives rise to dark-sector decays, with heavier dark components decaying to lighter components. This in turn can even give rise to relatively long dark decay chains, with each step of the decay chain also producing visible matter. The visible byproducts of such mediator-induced decay chains can therefore serve as a unique signature of such scenarios. In order to examine this possibility more concretely, we examine a scenario in which a multi-component dark sector is connected through a mediator to Standard-Model quarks. We then demonstrate that such a scenario gives rise to multi-jet collider signatures, and we examine the properties of such jets at both the parton and detector levels. Within relatively large regions of parameter space, we find that such multi-jet signatures are not excluded by existing monojet and multi-jet searches. Such decay cascades therefore represent a potential discovery route for multi-component dark sectors at current and future colliders.
The Lyman-$alpha$ forest is a valuable probe of dark matter models featuring a scale-dependent suppression of the power spectrum as compared to $Lambda$CDM. In this work, we present a new estimator of the Lyman-$alpha$ flux power spectrum that does n ot rely on hydrodynamical simulations. Our framework is characterized by nuisance parameters that encapsulate the complex physics of the intergalactic medium and sensitivity to highly non-linear small-scale modes. After validating the approach based on high-resolution hydrodynamical simulations for $Lambda$CDM, we derive conservative constraints on interacting dark matter models from BOSS Lyman-$alpha$ data on large scales, k<0.02(km/s)^(-1), with the relevant nuisance parameters left free in the model fit. The estimator yields lower bounds on the mass of cannibal dark matter, where freeze-out occurs through 3-to-2 annihilation, in the MeV range. Furthermore, we find that models of dark matter interacting with dark radiation, which have been argued to address the $H_0$ and $sigma_8$ tensions, are compatible with BOSS Lyman-$alpha$ data.
The late-time modifications of the standard $Lambda$ Cold Dark Matter ($Lambda$CDM) cosmological model can be parameterized by three time-dependent functions describing the expansion history of the Universe and gravitational effects on light and matt er in the Large Scale Structure. In this Letter, we present the first joint reconstruction of these three functions performed in a non-parametric way from a combination of recent cosmological observations. The reconstruction is performed with a theory-informed prior, built on the general Horndeski class of scalar-tensor theories. We find that current data can constrain 15 combined modes of these three functions with respect to the prior. Our methodology enables us to identify the phenomenological features that alternative theories would need to have in order to ease some of the tensions between datasets within $Lambda$CDM, and deduce important constraints on broad classes of modified gravity models.
Stochastic gravitational wave (GW) backgrounds from first-order phase transitions are an exciting target for future GW observatories and may enable us to study dark sectors with very weak couplings to the Standard Model. In this work we show that suc h signals may be significantly enhanced for hot dark sectors with a temperature larger than the one of the SM thermal bath. The need to transfer the entropy from the dark sector to the SM after the phase transition can however lead to a substantial dilution of the GW signal. We study this dilution in detail, including the effect of number-changing processes in the dark sector (so-called cannibalism), and show that in large regions of parameter space a net enhancement remains. We apply our findings to a specific example of a dark sector containing a dark Higgs boson and a dark photon and find excellent detection prospects for LISA and the Einstein telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا