ﻻ يوجد ملخص باللغة العربية
We report the experimental observation of tunable, non-reciprocal quantum transport of a Bose-Einstein condensate in a momentum lattice. By implementing a dissipative Aharonov-Bohm (AB) ring in momentum space and sending atoms through it, we demonstrate a directional atom flow by measuring the momentum distribution of the condensate at different times. While the dissipative AB ring is characterized by the synthetic magnetic flux through the ring and the laser-induced loss on it, both the propagation direction and transport rate of the atom flow sensitively depend on these highly tunable parameters. We demonstrate that the non-reciprocity originates from the interplay of the synthetic magnetic flux and the laser-induced loss, which simultaneously breaks the inversion and the time-reversal symmetries. Our results open up the avenue for investigating non-reciprocal dynamics in cold atoms, and highlight the dissipative AB ring as a flexible building element for applications in quantum simulation and quantum information.
Simple models of interacting spins play an important role in physics. They capture the properties of many magnetic materials, but also extend to other systems, such as bosons and fermions in a lattice, systems with gauge fields, high-Tc superconducto
With an atomic force microscope a ring geometry with self-aligned in-plane gates was directly written into a GaAs/AlGaAs-heterostructure. Transport measurements in the open regime show only one transmitting mode and Aharonov-Bohm oscillations with mo
The Josephson current through an Aharonov-Bohm (AB) interferometer, in which a quantum dot (QD) is situated on one arm and a magnetic flux $Phi$ threads through the ring, has been investigated. With the existence of the magnetic flux, the relation of
Open physical systems with balanced loss and gain, described by non-Hermitian parity-time ($mathcal{PT}$) reflection symmetric Hamiltonians, exhibit a transition which could engenders modes that exponentially decay or grow with time and thus spontane
We predict that an atomic Bose-Einstein condensate strongly coupled to an intracavity optical lattice can undergo resonant tunneling and directed transport when a constant and uniform bias force is applied. The bias force induces Bloch oscillations,