ﻻ يوجد ملخص باللغة العربية
Rayleigh-Benard convection (RBC) is a fundamental problem of fluid dynamics, with many applications to geophysical, astrophysical, and industrial flows. Understanding RBC at parameter regimes of interest requires complex physical or numerical experiments. Numerical simulations require large amounts of computational resources; in order to more efficiently use the large numbers of processors now available in large high performance computing clusters, novel parallelisation strategies are required. To this end, we investigate the performance of the parallel-in-time algorithm Parareal when used in numerical simulations of RBC. We present the first parallel-in-time speedups for RBC simulations at finite Prandtl number. We also investigate the problem of convergence of Parareal with respect to to statistical numerical quantities, such as the Nusselt number, and discuss the importance of reliable online stopping criteria in these cases.
The precise mechanisms responsible for the natural dynamos in the Earth and Sun are still not fully understood. Numerical simulations of natural dynamos are extremely computationally intensive, and are carried out in parameter regimes many orders of
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Rasim 10^9$. Power law scalings of $Nusim Ra^{gamma}$
Using direct numerical simulations, we study the statistical properties of reversals in two-dimensional Rayleigh-Benard convection for infinite Prandtl number. We find that the large-scale circulation reverses irregularly, with the waiting time betwe
We study numerically the melting of a horizontal layer of a pure solid above a convecting layer of its fluid rotating about the vertical axis. In the rotating regime studied here, with Rayleigh numbers of order $10^7$, convection takes the form of co
We have developed novel instrumentation for making Lagrangian measurements of temperature in diverse fluid flows. A small neutrally buoyant capsule is equipped with on-board electronics which measure temperature and transmit the data via a wireless r