ﻻ يوجد ملخص باللغة العربية
We study covariant derivatives on a class of centered bimodules $mathcal{E}$ over an algebra A. We begin by identifying a $mathbb{Z} ( A ) $-submodule $ mathcal{X} ( A ) $ which can be viewed as the analogue of vector fields in this context; $ mathcal{X} ( A ) $ is proven to be a Lie algebra. Connections on $mathcal{E}$ are in one to one correspondence with covariant derivatives on $ mathcal{X} ( A ). $ We recover the classical formulas of torsion and metric compatibility of a connection in the covariant derivative form. As a result, a Koszul formula for the Levi-Civita connection is also derived.
Given a tame differential calculus over a noncommutative algebra $mathcal{A}$ and an $mathcal{A}$-bilinear pseudo-Riemannian metric $g_0,$ consider the conformal deformation $ g = k. g_0, $ $k$ being an invertible element of $mathcal{A}.$We prove tha
We give a new definition of Levi-Civita connection for a noncommutative pseudo-Riemannian metric on a noncommutative manifold given by a spectral triple. We prove the existence-uniqueness result for a class of modules of one forms over a large class
We prove the existence and uniqueness of Levi-Civita connections for strongly sigma-compatible pseudo-Riemannian metrics on tame differential calculi. Such pseudo-Riemannian metrics properly contain the classes of bilinear metrics as well as their co
Given a bicovariant differential calculus $(mathcal{E}, d)$ such that the braiding map is diagonalisable in a certain sense, the bimodule of two-tensors admits a direct sum decomposition into symmetric and anti-symmetric tensors. This is used to prov
We construct a noncommutative Cartan calculus on any braided commutative algebra and study its applications in noncommutative geometry. The braided Lie derivative, insertion and de Rham differential are introduced and related via graded braided commu