ﻻ يوجد ملخص باللغة العربية
We present a large-scale numerical study, supplemented by experimental observations, of a quasi-two-dimensional active system of polar rods and spherical beads confined between two horizontal plates and energised by vertical vibration. For low rod concentrations $Phi_r$ we observe a direct phase transition, as bead concentration $Phi_b$ is increased, from the isotropic phase to a homogeneous flock. For $Phi_r$ above a threshold value, an ordered band dense in both rods and beads occurs between the disordered phase and the homogeneous flock, in both experiments and simulations. Within the size ranges accessible we observe only a single band, whose width increases with $Phi_r$. Deep in the ordered state, we observe broken-symmetry sound modes and giant number fluctuations. The direction-dependent sound speeds and the scaling of fluctuations are consistent with the predictions of field theories of flocking, but sound damping rates show departures from such theories. At very high densities we see phase separation into rod-rich and bead-rich regions, both of which move coherently.
Gravity can affect colloidal suspensions since for micrometer-sized particles gravitational and thermal energies can be comparable over vertical length scales of a few millimeters. In mixtures, each species possesses a different buoyant mass, which c
The control of biofilm formation is a challenging goal that has not been reached yet in many aspects. One is the role of van der Waals forces and another the importance of mutual interactions between the adsorbing and the adsorbed biomolecules (criti
We study a binary mixture of polar chiral (counterclockwise or clockwise) active particles in a two-dimensional box with periodic boundary conditions. Beside the excluded volume interactions between particles, particles are also subject to the polar
Mesoscopic molecular dynamics simulations are used to determine the large scale structure of several binary polymer mixtures of various chemical architecture, concentration, and thermodynamic conditions. By implementing an analytical formalism, which
We investigate the phase behavior and kinetics of a monodisperse mixture of active (textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the