ﻻ يوجد ملخص باللغة العربية
A classical result from analytic number theory by Rademacher gives an exact formula for the Fourier coefficients of modular forms of non-positive weight. We apply similar techniques to study the spectrum of two-dimensional unitary conformal field theories, with no extended chiral algebra and $c>1$. By exploiting the full modular constraints of the partition function we propose an expression for the spectral density in terms of the light spectrum of the theory. The expression is given in terms of a Rademacher expansion, which converges for spin $j eq 0$. For a finite number of light operators the expression agrees with a variant of the Poincare construction developed by Maloney, Witten and Keller. With this framework we study the presence of negative density of states in the partition function dual to pure gravity, and propose a scenario to cure this negativity.
We apply the theory of harmonic analysis on the fundamental domain of $SL(2,mathbb{Z})$ to partition functions of two-dimensional conformal field theories. We decompose the partition function of $c$ free bosons on a Narain lattice into eigenfunctions
We test the spectrum of string theory on AdS_5 x S^5 derived in hep-th/0305052 against that of single-trace gauge invariant operators in free N=4 super Yang-Mills theory. Masses of string excitations at critical tension are derived by extrapolating p
Modular invariance is known to constrain the spectrum of 2d conformal field theories. We investigate this constraint systematically, using the linear functional method to put new improved upper bounds on the lowest gap in the spectrum. We also consid
We study the spectrum and OPE coefficients of the three-dimensional critical O(2) model, using four-point functions of the leading scalars with charges 0, 1, and 2 ($s$, $phi$, and $t$). We obtain numerical predictions for low-twist OPE data in sever
Using the thermodynamical Bethe ansatz method we derive an infinite set of integral non-linear equations for the spectrum of states/operators in AdS/CFT. The Y-system conjectured in arXiv:0901.3753 for the spectrum of all operators in planar N=4 SYM