ترغب بنشر مسار تعليمي؟ اضغط هنا

Rademacher Expansions and the Spectrum of 2d CFT

60   0   0.0 ( 0 )
 نشر من قبل Jin-Beom Bae
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A classical result from analytic number theory by Rademacher gives an exact formula for the Fourier coefficients of modular forms of non-positive weight. We apply similar techniques to study the spectrum of two-dimensional unitary conformal field theories, with no extended chiral algebra and $c>1$. By exploiting the full modular constraints of the partition function we propose an expression for the spectral density in terms of the light spectrum of the theory. The expression is given in terms of a Rademacher expansion, which converges for spin $j eq 0$. For a finite number of light operators the expression agrees with a variant of the Poincare construction developed by Maloney, Witten and Keller. With this framework we study the presence of negative density of states in the partition function dual to pure gravity, and propose a scenario to cure this negativity.



قيم البحث

اقرأ أيضاً

We apply the theory of harmonic analysis on the fundamental domain of $SL(2,mathbb{Z})$ to partition functions of two-dimensional conformal field theories. We decompose the partition function of $c$ free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space $mathbb H/SL(2,mathbb Z)$, and of target space moduli space $O(c,c;mathbb Z)backslash O(c,c;mathbb R)/O(c)times O(c)$. This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS$_3$ gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies.
We test the spectrum of string theory on AdS_5 x S^5 derived in hep-th/0305052 against that of single-trace gauge invariant operators in free N=4 super Yang-Mills theory. Masses of string excitations at critical tension are derived by extrapolating p lane-wave frequencies at g_{YM}=0 down to finite J. On the SYM side, we present a systematic description of the spectrum of single-trace operators and its reduction to PSU(2,2|4) superconformal primaries via a refined Eratostenes supersieve. We perform the comparison of the resulting SYM/string spectra of charges and multiplicities order by order in the conformal dimension Delta up to Delta=10 and find perfect agreement. Interestingly, the SYM/string massive spectrum exhibits a hidden symmetry structure larger than expected, with bosonic subgroup SO(10,2) and thirty-two supercharges.
Modular invariance is known to constrain the spectrum of 2d conformal field theories. We investigate this constraint systematically, using the linear functional method to put new improved upper bounds on the lowest gap in the spectrum. We also consid er generalized partition functions of N = (2,2) superconformal theories and discuss the application of our results to Calabi-Yau compactifications. For Calabi-Yau threefolds with no enhanced symmetry we find that there must always be non-BPS primary states of weight 0.6 or less.
We study the spectrum and OPE coefficients of the three-dimensional critical O(2) model, using four-point functions of the leading scalars with charges 0, 1, and 2 ($s$, $phi$, and $t$). We obtain numerical predictions for low-twist OPE data in sever al charge sectors using the extremal functional method. We compare the results to analytical estimates using the Lorentzian inversion formula and a small amount of numerical input. We find agreement between the analytic and numerical predictions. We also give evidence that certain scalar operators lie on double-twist Regge trajectories and obtain estimates for the leading Regge intercepts of the O(2) model.
Using the thermodynamical Bethe ansatz method we derive an infinite set of integral non-linear equations for the spectrum of states/operators in AdS/CFT. The Y-system conjectured in arXiv:0901.3753 for the spectrum of all operators in planar N=4 SYM theory follows from these equations. In particular, we present the integral equations for the spectrum of all operators within the sl(2) sector. We prove that all the kernels and free terms entering these TBA equations are real and have nice fusion properties in the relevant mirror kinematics. We find the analogue of DHM formula for the dressing kernel in the mirror kinematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا