ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of the second LIGO/Virgo event connected with binary neutron star merger S190425z in the gamma-ray range

40   0   0.0 ( 0 )
 نشر من قبل Sergei A. Grebenev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.S. Pozanenko




اسأل ChatGPT حول البحث

Observations of the gravitational-wave (GW) event S190425z registered by the LIGO/Virgo detectors with the Anti-Coincidence Shield (ACS) of the gamma-ray spectrometer SPI aboard the INTEGRAL observatory are presented. With a high probability (>99%) it was associated with a neutron star (NS) merger in a close binary system. This is only the second event of such type in the history of GW observations (after GW170817). A weak gamma-ray burst, GRB190425, consisting of two pulses in ~0.5 and ~5.9 s after the NS merging in S190425z was detected by SPI-ACS. The pulses had a priori reliability of 3.5 and 4.4 sigma as single events and 5.5 sigma as a combined event. Analysis of the SPI-ACS count rate history recorded these days (~125 ks in total) has shown that the rate of appearance of two close pulses with characteristics of GRB190425 by chance does not exceed 6.4 x 10^{-5} s^{-1}. We note that the time profile of GRB190425 has a lot in common with the profile of the GRB170817A burst accompanying the GW170817 event; that both the NS mergers were the closest (<150 Mpc) of all the events registered by the LIGO/Virgo detectors; and that there were no confident excesses of gamma-ray emission over the background detected in any of >30 black hole merger events recorded to the moment by these detectors. No hard X-ray flares were detected in the field of view of the SPI and IBIS-ISGRI gamma-ray telescopes aboard INTEGRAL. This, as well as the lack of detection of gamma-ray emission from GRB190425 by the GBM monitor of the Fermi observatory assuming its occultation by the Earth, can significantly reduce the localization area for the source of this GW event. The estimates of the parameters E_{iso} and E_{p} for GRB190425 are obtained and compared with the similar parameters for GRB170817A.



قيم البحث

اقرأ أيضاً

232 - W. Fong , E. Berger 2017
We present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range o f $z approx 0.12-2.6$ discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is $approx 3000$ times less than the median value of on-axis short GRB X-ray afterglows, and $gtrsim10^{4}$ times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-IR counterpart to GW170817 is comparatively under-luminous by a factor of $approx 3-5$, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on $lesssim 1$ day timescales also rules out a blue kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC4993, in the context of short GRB host galaxy stellar population properties. We find that NGC4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced LIGO/VIRGO volume will be crucial in delineating the properties of the host galaxies of NS-NS mergers, and connecting them to their cosmological counterparts.
We report deep Chandra, HST and VLA observations of the binary neutron star event GW170817 at $t<160$ d after merger. These observations show that GW170817 has been steadily brightening with time and might have now reached its peak, and constrain the emission process as non-thermal synchrotron emission where the cooling frequency $ u_c$ is above the X-ray band and the synchrotron frequency $ u_m$ is below the radio band. The very simple power-law spectrum extending for eight orders of magnitude in frequency enables the most precise measurement of the index $p$ of the distribution of non-thermal relativistic electrons $N(gamma)propto gamma^{-p}$ accelerated by a shock launched by a NS-NS merger to date. We find $p=2.17pm0.01$, which indicates that radiation from ejecta with $Gammasim3-10$ dominates the observed emission. While constraining the nature of the emission process, these observations do emph{not} constrain the nature of the relativistic ejecta. We employ simulations of explosive outflows launched in NS ejecta clouds to show that the spectral and temporal evolution of the non-thermal emission from GW170817 is consistent with both emission from radially stratified quasi-spherical ejecta traveling at mildly relativistic speeds, emph{and} emission from off-axis collimated ejecta characterized by a narrow cone of ultra-relativistic material with slower wings extending to larger angles. In the latter scenario, GW170817 harbored a normal SGRB directed away from our line of sight. Observations at $tle 200$ days are unlikely to settle the debate as in both scenarios the observed emission is effectively dominated by radiation from mildly relativistic material.
We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 9 8 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of $<9.38 times 10^{-6}$ (modeled) and $3.1 times 10^{-4}$ (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for $z leq 1$. We estimate 0.07-1.80 joint detections with Fermi-GBM per year for the 2019-20 LIGO-Virgo observing run and 0.15-3.90 per year when current gravitational-wave detectors are operating at their design sensitivities.
We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3h after GW170817. The H.E.S.S. target se lection identified regions of high probability to find a counterpart of the gravitational wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between $270,mathrm{GeV}$ to $8.55,mathrm{TeV}$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.
Two neutron stars merge somewhere in the Universe approximately every 10 seconds, creating violent explosions observable in gravitational waves and across the electromagnetic spectrum. The transformative coincident gravitational-wave and electromagne tic observations of the binary neutron star merger GW170817 gave invaluable insights into these cataclysmic collisions, probing bulk nuclear matter at supranuclear densities, the jet structure of gamma-ray bursts, the speed of gravity, and the cosmological evolution of the local Universe, among other things. Despite the wealth of information, it is still unclear when the remnant of GW170817 collapsed to form a black hole. Evidence from other short gamma-ray bursts indicates a large fraction of mergers may form long-lived neutron stars. We review what is known observationally and theoretically about binary neutron star post-merger remnants. From a theoretical perspective, we review our understanding of the evolution of short- and long-lived merger remnants, including fluid, magnetic-field, and temperature evolution. These considerations impact prospects of detection of gravitational waves from either short- or long-lived neutron star remnants which potentially allows for new probes into the hot nuclear equation of state in conditions inaccessible in terrestrial experiments. We also review prospects for determining post-merger physics from current and future electromagnetic observations, including kilonovae and late-time x-ray and radio afterglow observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا