ترغب بنشر مسار تعليمي؟ اضغط هنا

Passive radiative cooling impact on commercial crystalline silicon-based photovoltaics

66   0   0.0 ( 0 )
 نشر من قبل George Perrakis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف George Perrakis




اسأل ChatGPT حول البحث

The radiative cooling of objects during daytime under direct sunlight has recently been shown to be significantly enhanced by utilizing nanophotonic coatings. Multilayer thin film stacks, 2D photonic crystals, etc. as coating structures improved the thermal emission rate of a device in the infrared atmospheric transparency window reducing considerably devices temperature. Due to the increased heating in photovoltaic (PV) devices, that has significant adverse consequences on both their efficiency and life-time, and inspired by the recent advances in daytime radiative cooling, we developed a coupled thermal-electrical modeling to examine the physical mechanisms on how a radiative cooler affects the overall efficiency of commercial photovoltaic modules. Employing this modeling, which takes into account all the major processes affected by the temperature variation in a PV device, we evaluated the relative impact of the main radiative cooling approaches proposed so far on the PV efficiency, and we established required conditions for optimized radiative cooling. Moreover, we identified the validity regimes of the currently existing PV-cooling models which treat the PV coolers as simple thermal emitters. Finally, we assessed some realistic photonic coolers from the literature, compatible with photovoltaics, to implement the radiative cooling requirements, and demonstrated their associated impact on the temperature reduction and PV efficiency. Providing the physical mechanisms and requirements for cooling radiatively solar cells, our study provides guidelines for utilizing suitable photonic structures as radiative coolers, enhancing the efficiency and the lifetime of PV devices.

قيم البحث

اقرأ أيضاً

Radiative cooling is a passive cooling technology by reflecting sunlight and emitting radiation in the atmospheric sky window. Although highly desired, full daytime sub-ambient radiative cooling in commercial-like single-layer particle-matrix paints is yet to be achieved. In this work, we have demonstrated full daytime sub-ambient radiative cooling in CaCO3-acrylic paint by adopting large bandgap fillers, a high particle concentration and a broad size distribution. Our paint shows the highest solar reflectance of 95.5% among paints and a high sky-window emissivity of 0.94. Field tests show cooling power exceeding 37 W/m2 and lower surface temperature more than 1.7C below ambient at noon. A figure of merit RC is proposed to compare the cooling performance under different weather conditions. The RC of our cooling paint is 0.62, among the best radiative cooling performance while offering unprecedented benefits of the convenient paint form, low cost, and the compatibility with commercial paint fabrication process.
A fundamental limit of current radiative cooling systems is that only the top surface facing deep-space can provide the radiative cooling effect, while the bottom surface cannot. Here, we propose and experimentally demonstrate a concept of concentrat ed radiative cooling by nesting a radiative cooling system in a mid-infrared reflective trough, so that the lower surface, which does not contribute to radiative cooling in previous systems, can radiate heat to deep-space via the reflective trough. Field experiments show that the temperature drop of a radiative cooling pipe with the trough is more than double that of the standalone radiative cooling pipe. Furthermore, by integrating the concentrated radiative cooling system as a preconditioner in an air conditioning system, we predict electricity savings of $>75%$ in Phoenix, AZ, and $>80%$ in Reno, NV, for a single-story commercial building.
Adopting thin Si wafers for PV reduces capital expenditure (capex) and manufacturing cost, and accelerates the growth of PV manufacturing. There are two key questions about thin Si today: (a) how much can we still benefit economically from thinning w afers? (b) what are the technological challenges to transition to thin wafers? In this work, we re-evaluate the benefits and challenges of thin Si for current and future PV modules using a comprehensive techno-economic framework that couples device simulation, bottom-up cost modeling, and a cash-flow growth model. When adopting an advanced technology concept that features sufficiently good surface passivation, similarly high efficiencies are achievable for 50-um wafers as for 160-um ones. We then quantify the economic benefits for thin Si wafers in terms of poly-Si-to-module manufacturing capex, module cost, and levelized cost of electricity (LCOE) for utility PV systems. Particularly, LCOE favors thinner wafers for all investigated device architectures, and can potentially be reduced by more than 5% from the value of 160-um wafers. With further improvements in module efficiency, an advanced thin-wafer device concept with 50-um wafers could reduce manufacturing capex by 48%, module cost by 28%, and LCOE by 24%. Furthermore, we apply a sustainable growth model to investigate PV deployment scenarios in 2030. It is found that the state-of-the-art industry concept could not achieve the climate targets even with very aggressive financial scenarios, therefore the capex reduction benefit of thin wafers is needed to facilitate more rapid PV growth. Lastly, we discuss the remaining technological challenges and areas for innovation to enable high-yield manufacturing of high-efficiency PV modules with thin Si wafers.
127 - Meng Yang , Weizhi Zou , Jing Guo 2020
Energy-saving cooling materials with strong operability are desirable towards sustainable thermal management. Inspired by the cooperative thermo-optical effect in fur of polar bear, we develop a flexible and reusable cooling skin via laminating a pol ydimethylsiloxane film with a highly-scattering polyethylene aerogel. Owing to its high porosity of 97.9% and tailored pore size of 3.8 +- 1.4 micrometers, superior solar reflectance of 0.96 and high transparency to irradiated thermal energy of 0.8 can be achieved at a thickness of 2.7 mm. Combined with low thermal conductivity of 0.032 W/m/K of the aerogel, the cooling skin exerts midday sub-ambient temperature drops of 5-6 degrees in a metropolitan environment, with an estimated limit of 14 degrees under ideal service conditions. We envision that this generalized bilayer approach will construct a bridge from night-time to daytime radiative cooling and pave the way for economical, scalable, flexible and reusable cooling materials.
Passive radiative cooling drawing the heat energy of objects to the cold outer space through the atmospheric transparent window (8 um - 13 um) is significant for reducing the energy consumption of buildings. Daytime and nighttime radiative cooling ha ve been extensively investigated in the past. However, radiative cooling which can continuously regulate its cooling temperature, like a valve, according to human need is rarely reported. In this study, we present a concept of reconfigurable photonic structure for the adaptive radiative cooling by continuously varying the emission spectra in the atmospheric window region. This is realized by the deformation of the one-dimensional PDMS grating and the nanoparticles embedded PDMS thin film when subjected to mechanical strain. The proposed structure reaches different stagnation temperatures under certain strains. A dynamic exchange between two different strains results in the fluctuation of the photonic structures temperature around a set temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا