ﻻ يوجد ملخص باللغة العربية
We report an unusual buildup of the quantum coherence in a qubit subjected to non-Hermitian evolution generated by a Parity-Time ($mathcal{PT}$) symmetric Hamiltonian, which is reinterpreted as a Hermitian system in a higher dimensional space using Naimark dilation. The coherence is found to be maximum about the exceptional points (EPs), i.e., the points of coalescence of the eigenvalues as well as the eigenvectors. The nontrivial physics about EPs has been observed in various systems, particularly in photonic systems. As a consequence of enhancement in coherence, the various formulations of Leggett-Garg inequality tests show maximal violation about the EPs.
We present a path analysis of the condition under which the outcomes of previous observation affect the results of the measurements yet to be made. It is shown that this effect, also known as signalling in time, occurs whenever the earlier measuremen
Ambiguous measurements do not reveal complete information about the system under test. Their quantum-mechanical counterparts are semi-weak (or in the limit, weak-) measurements and here we discuss their role in tests of the Leggett-Garg inequalities.
The Leggett-Garg inequality, an analogue of Bells inequality involving correlations of measurements on a system at different times, stands as one of the hallmark tests of quantum mechanics against classical predictions. The phenomenon of neutrino osc
Leggett and Garg derived inequalities that probe the boundaries of classical and quantum physics by putting limits on the properties that classical objects can have. Historically, it has been suggested that Leggett-Garg inequalities are easily violat
By weakly measuring the polarization of a photon between two strong polarization measurements, we experimentally investigate the correlation between the appearance of anomalous values in quantum weak measurements, and the violation of realism and non