ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering-based geometric shaping of photon-photon interactions

56   0   0.0 ( 0 )
 نشر من قبل Shahaf Asban
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct an effective Hamiltonian of interacting bosons, based on scattered radiation off vibrational modes of designed molecular architectures. Making use of the infinite yet countable set of spatial modes representing the scattering of light, we obtain a variable photon-photon interaction in this basis. The effective Hamiltonian hermiticity is controlled by a geometric factor set by the overlaps of spatial modes. Using this mapping, we relate intensity measurements of the light to correlation functions of the interacting bosons evolving according to the effective Hamiltonian, rendering local as well as nonlocal observables accessible. This architecture may be used to simulate the dynamics of interacting bosons, as well as designing tool for multi-qubit photonic gates in quantum computing applications. Variable hopping, interaction and confinement of the active space of the bosons are demonstrated on a model system.

قيم البحث

اقرأ أيضاً

While the phase of a coherent light field can be precisely known, the phase of the individual photons that create this field, considered individually, cannot. Phase changes within single-photon wave packets, however, have observable effects. In fact, actively controlling the phase of individual photons has been identified as a powerful resource for quantum communication protocols. Here we demonstrate the arbitrary phase control of a single photon. The phase modulation is applied without affecting the photons amplitude profile and is verified via a two-photon quantum interference measurement, which can result in the fermionic spatial behaviour of photon pairs. Combined with previously demonstrated control of a single photons amplitude, frequency, and polarisation, the fully deterministic phase shaping presented here allows for the complete control of single-photon wave packets.
112 - Mikkel Heuck , Kurt Jacobs , 2019
We study theoretically the interaction between two photons in a nonlinear cavity. The photons are loaded into the cavity via a method we propose here, in which the input/output coupling of the cavity is effectively controlled via a tunable coupling t o a second cavity mode that is itself strongly output-coupled. Incoming photon wave packets can be loaded into the cavity with high fidelity when the timescale of the control is smaller than the duration of the wave packets. Dynamically coupled cavities can be used to avoid limitations in the photon-photon interaction time set by the delay-bandwidth product of passive cavities. Additionally, they enable the elimination of wave packet distortions caused by dispersive cavity transmission and reflection. We consider three kinds of nonlinearities, those arising from $chi^{scriptscriptstyle(2)}$ and $chi^{scriptscriptstyle(3)}$ materials and that due to an interaction with a two-level emitter. To analyze the input and output of few-photon wave packets we use a Schrodinger-picture formalism in which travelling-wave fields are discretized into infinitesimal time-bins. We suggest that dynamically coupled cavities provide a very useful tool for improving the performance of quantum devices relying on cavity-enhanced light-matter interactions such as single-photon sources and atom-like quantum memories with photon interfaces. As an example, we present simulation results showing that high fidelity two-qubit entangling gates may be constructed using any of the considered nonlinear interactions.
We investigate the interaction of weak light fields with two-dimensional lattices of atoms, in which two-photon coupling establishes conditions of electromagnetically induced transparency and excites high lying atomic Rydberg states. This system feat ures different interactions that act on disparate length scales, from zero-range defect scattering of atomic excitations and finite-range dipole exchange interactions to long-range Rydberg-state interactions that span the entire array. Analyzing their interplay, we identify conditions that yield a nonlinear quantum mirror which coherently splits incident fields into correlated photon-pairs in a single transverse mode, while transmitting single photons unaffected. Such strong photon-photon interactions in the absence of otherwise detrimental photon losses in Rydberg-EIT arrays opens up a promising approach for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons.
293 - O. Ortiz , Y. Yugra , A. Rosario 2015
We report polarimetric measurements of geometric phases that are generated by evolving polarized photons along non-geodesic trajectories on the Poincare sphere. The core of our polarimetric array consists of seven wave plates that are traversed by a single photon beam. With this array any SU(2) transformation can be realized. By exploiting the gauge invariance of geometric phases under U(1) local transformations, we nullify the dynamical contribution to the total phase, thereby making the latter coincide with the geometric phase. We demonstrate our arrangement to be insensitive to various sources of noise entering it. This makes the single-beam, polarimetric array a promising, versatile tool for testing robustness of geometric phases against noise.
Photon pair entangled in high dimensional orbital angular momentum (OAM) degree of freedom (DOF) has been widely regarded as a possible source in improving the capacity of quantum information processing. The need for the generation of a high dimensio nal maximally entangled state in the OAM DOF is therefore much desired. In this work, we demonstrate a simple method to generate a broader and flatter OAM spectrum, i.e. a larger spiral bandwidth (SB), of entangled photon pairs generated through spontaneous parametric down-conversion by modifying the pump beam profile. By investigating both experimentally and theoretically, we have found that an exponential pump profile that is roughly the inverse of the mode profiles of the single-mode fibers used for OAM detection will provide a much larger SB when compared to a Gaussian shaped pump.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا