ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersed Matter Planet Project Discoveries of Ablating Planets Orbiting Nearby Bright Stars

71   0   0.0 ( 0 )
 نشر من قبل John Barnes
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Some highly irradiated close-in exoplanets orbit stars showing anomalously low stellar chromospheric emission. We attribute this to absorption by circumstellar gas replenished by mass loss from ablating planets. Here we report statistics validating this hypothesis. Among ~3000 nearby, bright, main sequence stars ~40 show depressed chromospheric emission indicative of undiscovered mass-losing planets. The Dispersed Matter Planet Project uses high precision, high cadence radial velocity measurements to detect these planets. We summarise results for two planetary systems (DMPP-1 and DMPP-3) and fully present observations revealing a Mp sin i = 0.469 M$_{rm J}$ planet in a 5.207 d orbit around the $gamma$-Doradus pulsator HD 11231 (DMPP-2). We have detected short period planets wherever we have made more than 60 RV measurements, demonstrating that we have originated a very efficient method for detecting nearby compact planetary systems. Our shrouded, ablating planetary systems may be a short-lived phase related to the Neptunian desert: i.e. the dearth of intermediate-mass planets at short orbital periods. The circumstellar gas facilitates compositional analysis; allowing empirical exogeology in the cases of sublimating rocky planets. Dispersed Matter Planet Project discoveries will be important for establishing the empirical mass-radius-composition relationship(s) for low mass planets.


قيم البحث

اقرأ أيضاً

We present the discovery and characterization of five hot and warm Jupiters -- TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960) -- bas ed on data from NASAs Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the $TESS$ Follow-up Observing Program (TFOP) Working Group. The planets are all Jovian size (R$_{rm P}$ = 1.01-1.77 R$_{rm J}$) and have masses that range from 0.85 to 6.33 M$_{rm J}$. The host stars of these systems have F and G spectral types (5595 $le$ T$_{rm eff}$ $le$ 6460 K) and are all relatively bright (9 $<V<$ 10.8, 8.2 $<K<$ 9.3) making them well-suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars (log g$_*$ $<$4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (R$_{rm P}$ > 1.7R$_{rm J}$, possibly a result of its host stars evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive hot Jupiter discovered to date by $TESS$ with a measured mass of $6.31^{+0.28}_{-0.30}$ M$_{rm J}$ and a statistically significant, non-zero orbital eccentricity of e = $0.074^{+0.021}_{-0.022}$. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-Solar analogue. NASAs $TESS$ mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals.
Gas giants orbiting interior to the ice line are thought to have been displaced from their formation locations by processes that remain debated. Here we uncover several new metallicity trends, which together may indicate that two competing mechanisms deliver close-in giant planets: gentle disk migration, operating in environments with a range of metallicities, and violent planet-planet gravitational interactions, primarily triggered in metal-rich systems in which multiple giant planets can form. First, we show with 99.1% confidence that giant planets with semi-major axes between 0.1 and 1 AU orbiting metal-poor stars ([Fe/H]<0) are confined to lower eccentricities than those orbiting metal-rich stars. Second, we show with 93.3% confidence that eccentric proto-hot Jupiters undergoing tidal circularization primarily orbit metal-rich stars. Finally, we show that only metal-rich stars host a pile-up of hot Jupiters, helping account for the lack of such a pile-up in the overall Kepler sample. Migration caused by stellar perturbers (e.g. stellar Kozai) is unlikely to account for the trends. These trends further motivate follow-up theoretical work addressing which hot Jupiter migration theories can also produce the observed population of eccentric giant planets between 0.1 and 1 AU.
85 - Sheng Jin 2021
This paper aims to derive a map of relative planet occurrence rates that can provide constraints on the overall distribution of terrestrial planets around FGK stars. Based on the planet candidates in the Kepler DR25 data release, I first generate a c ontinuous density map of planet distribution using a Gaussian kernel model and correct the geometric factor that the discovery space of a transit event decreases along with the increase of planetary orbital distance. Then I fit two exponential decay functions of detection efficiency along with the increase of planetary orbital distance and the decrease of planetary radius. Finally, the density map of planet distribution is compensated for the fitted exponential decay functions of detection efficiency to obtain a relative occurrence rate distribution of terrestrial planets. The result shows two regions with planet abundance: one corresponds to planets with radii between 0.5 and 1.5 R_Earth within 0.2 AU, the other corresponds to planets with radii between 1.5 and 3 R_Earth beyond 0.5 AU. It also confirms the features that may be caused by atmospheric evaporation: there is a vacancy of planets of sizes between 2.0 and 4.0 R_Earth inside of ~ 0.5 AU, and a valley with relatively low occurrence rates between 0.2 and 0.5 AU for planets with radii between 1.5 and 3.0 R_Earth.
We report detections of new exoplanets from a radial velocity (RV) survey of metal-rich FGK stars by using three telescopes. By optimizing our RV analysis method to long time-baseline observations, we have succeeded in detecting five new Jovian-plane ts around three metal-rich stars HD 1605, HD 1666, and HD 67087 with the masses of $1.3 M_{odot}$, $1.5 M_{odot}$, and $1.4 M_{odot}$, respectively. A K1 subgiant star HD 1605 hosts two planetary companions with the minimum masses of $ M_p sin i = 0.96 M_{mathrm{JUP}}$ and $3.5 M_{mathrm{JUP}}$ in circular orbits with the planets periods $P = 577.9$ days and $2111$ days, respectively. HD 1605 shows a significant linear trend in RVs. Such a system consisting of Jovian planets in circular orbits has rarely been found and thus HD 1605 should be an important example of a multi-planetary system that is likely unperturbed by planet-planet interactions. HD 1666 is a F7 main sequence star which hosts an eccentric and massive planet of $ M_p sin i = 6.4 M_{mathrm{JUP}}$ in the orbit with $a_{rm p} = 0.94$ AU and an eccentricity $e=0.63$. Such an eccentric and massive planet can be explained as a result of planet-planet interactions among Jovian planets. While we have found the large residuals of $mathrm{rms} = 35.6 mathrm{m s^{-1}}$, the periodogram analysis does not support any additional periodicities. Finally, HD 67087 hosts two planets of $ M_p sin i = 3.1 M_{mathrm{JUP}}$ and $4.9 M_{mathrm{JUP}}$ in orbits with $P=352.2$ days and $2374$ days, and $e=0.17$ and $0.76$, respectively. Although the current RVs do not lead to accurate determinations of its orbit and mass, HD 67087 c can be one of the most eccentric planets ever discovered in multiple systems.
We report the discovery of four transiting extrasolar planets (HAT-P-34b - HAT-P-37b) with masses ranging from 1.05 to 3.33 MJ and periods from 1.33 to 5.45 days. These planets orbit relatively bright F and G dwarf stars (from V = 10.16 to V = 13.2). Of particular interest is HAT-P-34b which is moderately massive (3.33 MJ), has a high eccentricity of e = 0.441 +/- 0.032 at P = 5.4526540+/-0.000016 d period, and shows hints of an outer component. The other three planets have properties that are typical of hot Jupiters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا