ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent Reflecting Surface-Assisted Cognitive Radio System

86   0   0.0 ( 0 )
 نشر من قبل Jie Yuan
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cognitive radio (CR) is an effective solution to improve the spectral efficiency (SE) of wireless communications by allowing the secondary users (SUs) to share spectrum with primary users. Meanwhile, intelligent reflecting surface (IRS), also known as reconfigurable intelligent surface (RIS), has been recently proposed as a promising approach to enhance energy efficiency (EE) of wireless communication systems through intelligently reconfiguring the channel environment. To improve both SE and EE, in this paper, we introduce multiple IRSs to a downlink multiple-input single-output (MISO) CR system, in which a single SU coexists with a primary network with multiple primary user receivers (PU-RXs). Our design objective is to maximize the achievable rate of SU subject to a total transmit power constraint on the SU transmitter (SU-TX) and interference temperature constraints on the PU-RXs, by jointly optimizing the beamforming at SU-TX and the reflecting coefficients at each IRS. Both perfect and imperfect channel state information (CSI) cases are considered in the optimization. Numerical results demonstrate that the introduction of IRS can significantly improve the achievable rate of SU under both perfect and imperfect CSI cases.



قيم البحث

اقرأ أيضاً

329 - Limeng Dong , Hui-Ming Wang , 2021
In this paper, an intelligent reflecting surface (IRS) assisted spectrum sharing underlay cognitive radio (CR) wiretap channel (WTC) is studied, and we aim at enhancing the secrecy rate of secondary user in this channel subject to total power constra int at secondary transmitter (ST), interference power constraint (IPC) at primary receiver (PR) as well as unit modulus constraint at IRS. Due to extra IPC and eavesdropper (Eve) are considered, all the existing solutions for enhancing secrecy rate of IRS-assisted non-CR WTC as well as enhancing transmission rate in IRS-assisted CR channel without eavesdropper fail in this work. Therefore, we propose new numerical solutions to optimize the secrecy rate of this channel under full primary, secondary users channel state information (CSI) and three different cases of Eves CSI: full CSI, imperfect CSI with bounded estimation error, and no CSI. Simulation results show that our proposed solutions for the IRS-assisted design greatly enhance the secrecy performance compared with the existing numerical solutions with and without IRS under full and imperfect Eves CSI. And positive secrecy rate can be achieved by our proposed AN aided approach given most channel realizations under no Eves CSI case so that secure communication also can be guaranteed. All of the proposed AO algorithms are guaranteed to monotonic convergence.
68 - Wenhao Cai , Rang Liu , Yang Liu 2021
Intelligent reflecting surface (IRS) is deemed as a promising and revolutionizing technology for future wireless communication systems owing to its capability to intelligently change the propagation environment and introduce a new dimension into wire less communication optimization. Most existing studies on IRS are based on an ideal reflection model. However, it is difficult to implement an IRS which can simultaneously realize any adjustable phase shift for the signals with different frequencies. Therefore, the practical phase shift model, which can describe the difference of IRS phase shift responses for the signals with different frequencies, should be utilized in the IRS optimization for wideband and multi-band systems. In this paper, we consider an IRS-assisted multi-cell multi-band system, in which different base stations (BSs) operate at different frequency bands. We aim to jointly design the transmit beamforming of BSs and the reflection beamforming of the IRS to minimize the total transmit power subject to signal to interference-plus-noise ratio (SINR) constraints of individual user and the practical IRS reflection model. With the aid of the practical phase shift model, the influence between the signals with different frequencies is taken into account during the design of IRS. Simulation results illustrate the importance of considering the practical communication scenario on the IRS designs and validate the effectiveness of our proposed algorithm.
In this letter, we investigate an intelligent reflecting surface (IRS) aided device-to-device (D2D) offloading system, where an IRS is employed to assist in computation offloading from a group of users with intensive tasks to another group of idle us ers. We propose a new two-timescale joint passive beamforming and resource allocation algorithm based on stochastic successive convex approximation to minimize the system latency while cutting down the heavy overhead in exchange of channel state information (CSI). Specifically, the high-dimensional passive beamforming vector at the IRS is updated in a frame-based manner based on the channel statistics, where each frame consists of a number of time slots, while the offloading ratio and user matching strategy are optimized relied on the low-dimensional real-time effective channel coefficients in each time slot. The convergence property and the computational complexity of the proposed algorithm are also examined. Simulation results show that our proposed algorithm significantly outperforms the conventional benchmarks.
In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the networks sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.
Intelligent reflecting surfaces (IRSs) constitute passive devices, which are capable of adjusting the phase shifts of their reflected signals, and hence they are suitable for passive beamforming. In this paper, we conceive their design with the activ e beamforming action of multiple-input multipleoutput (MIMO) systems used at the access points (APs) for improving the beamforming gain, where both the APs and users are equipped with multiple antennas. Firstly, we decouple the optimization problem and design the active beamforming for a given IRS configuration. Then we transform the optimization problem of the IRS-based passive beamforming design into a tractable non-convex quadratically constrained quadratic program (QCQP). For solving the transformed problem, we give an approximate solution based on the technique of widely used semidefinite relaxation (SDR). We also propose a low-complexity iterative solution. We further prove that it can converge to a locally optimal value. Finally, considering the practical scenario of discrete phase shifts at the IRS, we give the quantization design for IRS elements on basis of the two solutions. Our simulation results demonstrate the superiority of the proposed solutions over the relevant benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا