ﻻ يوجد ملخص باللغة العربية
Gravitational wave (GW) measurements provide the most robust constraints of the mass of astrophysical black holes. Using state-of-the-art GW signal models and a unique parameter estimation technique, we infer the source parameters of the loudest marginal trigger, GW170502, found by LIGO from 2015 to 2017. If this trigger is assumed to be a binary black hole merger, we find it corresponds to a total mass in the source frame of $157^{+55}_{-41}~rm{M}_odot$ at redshift $z=1.37^{+0.93}_{-0.64}$. The primary and secondary black hole masses are constrained to $94^{+44}_{-28}~rm{M}_{odot}$ and $62^{+30}_{-25}~rm{M}_{odot}$ respectively, with 90% confidence. Across all signal models, we find $gtrsim 70%$ probability for the effective spin parameter $chi_mathrm{eff}>0.1$. Furthermore, we find that the inclusion of higher-order modes in the analysis narrows the confidence region for the primary black hole mass by 10%, however, the evidence for these modes in the data remains negligible. The techniques outlined in this study could lead to robust inference of the physical parameters for all intermediate-mass black hole binary candidates $(gtrsim100~mathrm{M}_odot)$ in the current GW network.
The gravitational-wave GW170817 is associated to the inspiral phase of a binary neutron star coalescence event. The LIGO-Virgo detectors sensitivity at high frequencies was not sufficient to detect the signal corresponding to the merger and post-merg
Using exclusively the 777 full numerical waveforms of the third Binary Black Holes RIT catalog, we reanalyze the ten black hole merger signals reported in LIGO/Virgos O1/O2 observation runs. We obtain binary parameters, extrinsic parameters, and the
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009 - Oct
The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensi
The detection of intermediate-mass black holes (IMBHs) i.e. those with mass $sim 100$-$10^5 M_odot$, is an emerging goal of gravitational-wave (GW) astronomy with wide implications for cosmology and tests of strong-field gravity. Current PyCBC-based