ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring Parameters of GW170502: The Loudest Intermediate-mass Black Hole Trigger in LIGOs O1/O2 data

66   0   0.0 ( 0 )
 نشر من قبل Karan Jani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational wave (GW) measurements provide the most robust constraints of the mass of astrophysical black holes. Using state-of-the-art GW signal models and a unique parameter estimation technique, we infer the source parameters of the loudest marginal trigger, GW170502, found by LIGO from 2015 to 2017. If this trigger is assumed to be a binary black hole merger, we find it corresponds to a total mass in the source frame of $157^{+55}_{-41}~rm{M}_odot$ at redshift $z=1.37^{+0.93}_{-0.64}$. The primary and secondary black hole masses are constrained to $94^{+44}_{-28}~rm{M}_{odot}$ and $62^{+30}_{-25}~rm{M}_{odot}$ respectively, with 90% confidence. Across all signal models, we find $gtrsim 70%$ probability for the effective spin parameter $chi_mathrm{eff}>0.1$. Furthermore, we find that the inclusion of higher-order modes in the analysis narrows the confidence region for the primary black hole mass by 10%, however, the evidence for these modes in the data remains negligible. The techniques outlined in this study could lead to robust inference of the physical parameters for all intermediate-mass black hole binary candidates $(gtrsim100~mathrm{M}_odot)$ in the current GW network.



قيم البحث

اقرأ أيضاً

The gravitational-wave GW170817 is associated to the inspiral phase of a binary neutron star coalescence event. The LIGO-Virgo detectors sensitivity at high frequencies was not sufficient to detect the signal corresponding to the merger and post-merg er phases. Hence, the question whether the merger outcome was a prompt black hole formation or not must be answered using either the pre-merger gravitational wave signal or electromagnetic counterparts. In this work we present two methods to infer the probability of prompt black hole formation, using the analysis of the inspiral gravitational-wave signal. Both methods combine the posterior distribution from the gravitational-wave data analysis with numerical relativity results. One method relies on the use of phenomenological models for the equation of state and on the estimate of the collapse threshold mass. The other is based on the estimate of the tidal polarizability parameter $tilde{Lambda}$ that is correlated in an equation-of-state agnostic way with the prompt BH formation. We analyze GW170817 data and find that the two methods consistently predict a probability of ~ 50-70% for prompt black-hole formation, which however may significantly decrease below 10% if the maximum mass constraint from PSR J0348+0432 or PSR J0740+6620 is imposed.
Using exclusively the 777 full numerical waveforms of the third Binary Black Holes RIT catalog, we reanalyze the ten black hole merger signals reported in LIGO/Virgos O1/O2 observation runs. We obtain binary parameters, extrinsic parameters, and the remnant properties of these gravitational waves events which are consistent with, but not identical to previously presented results. We have also analyzed three additional events (GW170121, GW170304, GW170727) reported in Venumadhav et al. 2019, and found closely matching parameters. We finally assess the accuracy of our waveforms with convergence studies applied to O1/O2 events and found them adequate for current estimation of parameters.
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009 - Oct ober 2010) and was sensitive to IMBHBs with a range up to $sim 200$ Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and $450 mbox{M}_{odot}$ and mass ratios between $0.25$ and $1,$ were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005 - October 2007). The most stringent limit was set for systems consisting of two $88 mbox{M}_{odot}$ black holes and is equal to $0.12 mbox{Mpc}^{-3} mbox{Myr}^{-1}$ at the $90%$ confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binarys orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by $sim 20%,$.
The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensi tivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate mass black holes binaries. In this work we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate mass black hole binaries in the O1 LIGO Science Run data: a matched-filter based pipeline and a coherent un-modeled one. To this end we estimate the sensitivity of both searches to simulated signals including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly-equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.
The detection of intermediate-mass black holes (IMBHs) i.e. those with mass $sim 100$-$10^5 M_odot$, is an emerging goal of gravitational-wave (GW) astronomy with wide implications for cosmology and tests of strong-field gravity. Current PyCBC-based searches for compact binary mergers, which matched filter the detector data against a set of template waveforms, have so far detected or confirmed several GW events. However, the sensitivity of these searches to signals arising from mergers of IMBH binaries is not optimal. Here, we present a new optimised PyCBC-based search for such signals. Our search benefits from using a targeted template bank, stricter signal-noise discriminators and a lower matched-filter frequency cut-off. In particular, for a population of simulated signals with isotropically distributed spins, we improve the sensitive volume-time product over previous PyCBC-based searches, at an inverse false alarm rate of 100 years, by a factor of 1.5 to 3 depending on the total binary mass. We deploy this new search on Advanced LIGO-Virgo data from the first half of the third observing run. The search does not identify any new significant IMBH binaries but does confirm the detection of the short-duration GW signal GW190521 with a false alarm rate of 1 in 727 years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا