ترغب بنشر مسار تعليمي؟ اضغط هنا

Free at Last: Bose Metal Uncaged

43   0   0.0 ( 0 )
 نشر من قبل Philip Phillips
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A Bose metallic phase disrupts the classic two-state superconductor-insulator picture.

قيم البحث

اقرأ أيضاً

We discuss whether a simple theory of superconducting stripes coupled by Josephson tunneling can describe a metallic transport, once the coherent tunneling of pairs is suppressed by the magnetic field. For a clean system, the conclusion we reached is negative: the excitation spectrum of preformed pairs consists of Landau levels, and once the magnetic field exceeds a critical value, the transport becomes insulating. As a speculation, we suggest that a Bose metal can exist in disordered systems provided that the disorder is strong enough to localize some pairs. Then the coupling between propagating and localized pairs broadens the Landau levels, resulting in a metallic conductivity. Our model respects the particle-hole symmetry, which leads to a zero Hall response. And intriguingly, the resulting anomalous metallic state has no Drude peak and the spectral weight of the cyclotron resonance vanishes at low temperatures.
The theoretical understanding of the nematic state of iron-based superconductors and especially of FeSe is still a puzzling problem. Although a number of experiments calls for a prominent role of local correlations and place iron superconductors at t he entrance of a Hund metal state, the effect of the electronic correlations on the nematic state has been theoretically poorly investigated. In this work we study the nematic phase of iron superconductors accounting for local correlations, including the effect of the Hunds coupling. We show that Hunds physics strongly affects the nematic properties of the system. It severely constraints the precise nature of the feasible orbital-ordered state and induces a differentiation in the effective masses of the zx=yz orbitals in the nematic phase. The latter effect leads to distinctive signatures in different experimental probes, so far overlooked in the interpretation of experiments. As notable examples the splittings between zx and yz bands at Gamma and M points are modified, with important consequences for ARPES measurements.
84 - Yang Ma , Jiasen Niu , Wenyu Xing 2020
Superconductivity has been one of the most fascinating quantum states of matter for over several decades. Among the superconducting materials, LaAlO3/SrTiO3 interface is of particularly interest since superconductivity exists between two insulating m aterials, which provides it with various unique applications compared with bulk superconductors and makes it a suitable platform to study the quantum Hall effect, charge density wave, superconductivity and magnetism in one device. Therefore, a lot of efforts have been made to search new superconducting oxide interface states with higher superconducting critical temperature (TC). Recently, a superconducting state with TC ~ 2 K has been found at the interface between a ferromagnetic insulator EuO and a band insulator (111)-KTaO3. Here, we report the experimental investigation of the superconductor-metal quantum phase transition of the EuO/KTaO3 interface. Around the transition, a divergence of the dynamical critical exponent is observed, which supports the quantum Griffiths singularity in the EuO/KTaO3 interface. The quantum Griffiths singularity could be attributed to large rare superconducting regions and quenched disorders at the interface. Our results could pave the way for studying the exotic superconducting properties at the EuO/KTaO3 interface.
120 - J. Zhang , J. K. Dong , Y. Xu 2014
We report the synthesis and superconducting properties of a new transition-metal chalcogenide Ta$_2$PdSe$_5$. The measurements of resistivity, magnetization, and specific heat reveal that Ta$_2$PdSe$_5$ is a bulk superconductor with $T_c$ $simeq$ 2.5 K. The zero-field electronic specific heat in the superconducting state can be fitted with a two-gap BCS model. The upper critical field $H_{c2}$ shows a linear temperature dependence, and the value of $H_{c2}$(0) is much higher than the estimated Pauli limiting field $H_{c2}^{P}$ and orbital limiting field $H_{c2}^{orb}$. All these results of specific heat and upper critical field suggest that Ta$_2$PdSe$_5$ is a multi-band superconductor.
57 - Peng Lv , Ai-Min Guo , Huaiyu Li 2017
We study spin transport through a normal metal-spin superconductor junction. A spin-flip reflection is demonstrated at the interface, where a spin-up electron incident from the normal metal can be reflected as a spin-down electron and the spin $2time s hbar/2$ will be injected into the spin superconductor. When the (spin) voltage is smaller than the gap of the spin superconductor, the spin-flip reflection determines the transport properties of the junction. We consider both graphene-based (linear-dispersion-relation) and quadratic-dispersion-relation normal metal-spin superconductor junctions in detail. For the two-dimensional graphene-based junction, the spin-flip reflected electron can be along the specular direction (retro-direction) when the incident and reflected electron locates in the same band (different bands). A perfect spin-flip reflection can occur when the incident electron is normal to the interface, and the reflection coefficient is slightly suppressed for the oblique incident case. As a comparison, for the one-dimensional quadratic-dispersion-relation junction, the spin-flip reflection coefficient can reach 1 at certain incident energies. In addition, both the charge current and the spin current under a charge (spin) voltage are studied. The spin conductance is proportional to the spin-flip reflection coefficient when the spin voltage is less than the gap of the spin superconductor. These results will help us get a better understanding of spin transport through the normal metal-spin superconductor junction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا