ﻻ يوجد ملخص باللغة العربية
I show that classical capacity per unit cost of noisy bosonic Gaussian channels can be attained by employing generalized on-off keying modulation format and a projective measurement of individual output states. This means that neither complicated collective measurements nor phase-sensitive detection is required to communicate over optical channels at the ultimate limit imposed by laws of quantum mechanics in the limit of low average cost.
We consider a Gaussian multiple-access channel where the number of transmitters grows with the blocklength $n$. For this setup, the maximum number of bits that can be transmitted reliably per unit-energy is analyzed. We show that if the number of use
We consider a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may be unbounded. For this channel, we characterize the maximum number of bits that can be t
In a quantum mechanical model, Diosi, Feldmann and Kosloff arrived at a conjecture stating that the limit of the entropy of certain mixtures is the relative entropy as system size goes to infinity. The conjecture is proven in this paper for density m
The set of quantum Gaussian channels acting on one bosonic mode can be classified according to the action of the group of Gaussian unitaries. We look for bounds on the classical capacity for channels belonging to such a classification. Lower bounds c
This paper investigates the capacity and capacity per unit cost of Gaussian multiple access-channel (GMAC) with peak power constraints. We first devise an approach based on Blahut-Arimoto Algorithm to numerically optimize the sum rate and quantify th