ﻻ يوجد ملخص باللغة العربية
Using the galaxy catalog built from ELUCID N-body simulation and the semi-analytical galaxy formation model, we have built a mock HI intensity mapping map. We have implemented the Finger-of-God (FoG) effect in the map by considering the galaxy HI gas velocity dispersion. By comparing the HI power spectrum in the redshift space with the measurement from IllustrisTNG simulation, we have found that such FoG effect can explain the discrepancy between current mock map built from N-body simulation and Illustris TNG simulation. Then we built a parameter-free FoG model and a shot-noise model to calculate the HI power spectrum. We found that our model can accurately fit both the monopole and quadrupole moments of the HI matter power spectrum. Our method of building the mock HI intensity map and the parameter-free FoG model will be widely useful for the up-coming 21cm intensity mapping experiments, such as CHIME, Tianlai, BINGO, FAST and SKA. It is also crucial for us to study the non-linear effects in 21cm intensity mapping.
[Abridged] We study the abundance and clustering properties of HI at redshifts $zleqslant5$ using TNG100, a large state-of-the-art magneto-hydrodynamic simulation of a 75 Mpc/h box size. We show that most of the HI lies within dark matter halos and q
The Baryon Mapping eXperiment (BMX) is an interferometric array designed as a pathfinder for a future post-reionization 21 cm intensity mapping survey. It consists of four 4-meter parabolic reflectors each having offset pyramidal horn feed, quad-ridg
For decades, cosmologists have been using galaxies to trace the large-scale distribution of matter. At present, the largest source of systematic uncertainty in this analysis is the challenge of modeling the complex relationship between galaxy redshif
BINGO is a concept for performing a 21cm intensity mapping survey using a single dish telescope. We briefly discuss the idea of intensity mapping and go on to define our single dish concept. This involves a sim 40 m dish with an array of sim 50 feed
21cm intensity mapping is a novel approach aimed at measuring the power spectrum of density fluctuations and deducing cosmological information, notably from the Baryonic Acoustic Oscillations (BAO). We give an update on the progress of BAO from Integ