ترغب بنشر مسار تعليمي؟ اضغط هنا

A Systematic Study of Hidden Sector Dark Matter: Application to the Gamma-Ray and Antiproton Excesses

68   0   0.0 ( 0 )
 نشر من قبل Yu-Dai Tsai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly classify constraints from relic density requirements and dwarf spheroidal galaxy observations. In the scenario that the hidden sector was in equilibrium with the Standard Model in the early universe, we place a lower bound on the portal coupling, as well as on the dark matters elastic scattering cross section with nuclei. We apply our hidden sector results to the observed Galactic Center gamma-ray excess and the cosmic-ray antiproton excess. We find that both of these excesses can be simultaneously explained by a variety of hidden sector models, without any tension with constraints from observations of dwarf spheroidal galaxies.

قيم البحث

اقرأ أيضاً

We derive 95% CL lower limits on the lifetime of decaying dark matter in the channels $Z u$, $Well$ and $h u$ using measurements of the cosmic-ray antiproton flux by the PAMELA experiment. Performing a scan over the allowed range of cosmic-ray propag ation parameters we find lifetime limits in the range of $8 times 10^{28}$s to $5 times 10^{25}$s for dark matter masses from roughly 100 GeV to 10 TeV. We apply these limits to the well-motivated case of gravitino dark matter in scenarios with bilinear violation of R-parity and find a similar range of lifetime limits for the same range of gravitino masses. Converting the lifetime limits to constraints on the size of the R-parity violating coupling we find upper limits in the range of $10^{-8}$ to $8 times 10^{-13}$.
We report on constraints on the lifetime of decaying gravitino dark matter in models with bilinear R-parity violation derived from observations of cosmic-ray antiprotons with the PAMELA experiment. Performing a scan over a viable set of cosmic-ray pr opagation parameters we find lower limits ranging from $8times 10^{28}$s to $6times 10^{28}$s for gravitino masses from roughly 100 GeV to 10 TeV. Comparing these limits to constraints derived from gamma-ray and neutrino observations we conclude that the presented antiproton limits are currently the strongest and most robust limits on the gravitino lifetime in the considered mass range. These constraints correspond to upper limits on the size of the bilinear R-parity breaking parameter in the range of $10^{-8}$ to $8times 10^{-13}$.
We consider a minimal extension of the Standard Model with a hidden sector charged under a dark local $U(1)$ gauge group, accounting simultaneously for light neutrino masses and the observed Dark Matter relic abundance. The model contains two copies of right-handed neutrinos which give rise to light neutrino-masses via an extended seesaw mechanism. The presence of a stable Dark-Matter candidate and a massless state naturally arise by requiring the simplest anomaly-free particle content without introducing any extra symmetries. We investigate the phenomenology of the hidden sector considering the $U(1)$ breaking scale of the order of the electroweak scale. Confronting the thermal history of this hidden-sector model with existing and future constraints from collider, direct and indirect detection experiments provides various possibilities of probing the model in complementary ways as every particle of the dark sector plays a specific cosmological role. Across the identified viable parameter space, a large region predicts a sizable contribution to the effective relativistic degrees-of-freedom in the early Universe that allows to alleviate the recently reported tension between late and early measurements of the Hubble constant.
The Fermi Large Area Telescope observed an excess in gamma ray emission spectrum coming from the center of the Milky Way galaxy. This data reveals that a light Dark Matter (DM) candidate of mass in the range 31-40 GeV, dominantly decaying into $bbar b$ final state, can explain the presence of the observed bump in photon energy. We try to interpret this observed phenomena by sneutrino DM annihilation into pair of fermions in the Supersymmetric Inverse Seesaw Model (SISM). This model can also account for tiny non-zero neutrino masses satisfying existing neutrino oscillation data. We show that a Higgs portal DM in this model is in perfect agreement with this new interpretation besides satisfying all other existing collider, cosmological and low energy experimental constraints.
Utilizing the Fermi measurement of the gamma-ray spectrum toward the Galactic Center, we derive some of the strongest constraints to date on the dark matter (DM) lifetime in the mass range from hundreds of MeV to above an EeV. Our profile-likelihood based analysis relies on 413 weeks of Fermi Pass 8 data from 200 MeV to 2 TeV, along with up-to-date models for diffuse gamma-ray emission within the Milky Way. We model Galactic and extragalactic DM decay and include contributions to the DM-induced gamma-ray flux resulting from both primary emission and inverse-Compton scattering of primary electrons and positrons. For the extragalactic flux, we also calculate the spectrum associated with cascades of high-energy gamma-rays scattering off of the cosmic background radiation. We argue that a decaying DM interpretation for the 10 TeV-1 PeV neutrino flux observed by IceCube is disfavored by our constraints. Our results also challenge a decaying DM explanation of the AMS-02 positron flux. We interpret the results in terms of individual final states and in the context of simplified scenarios such as a hidden-sector glueball model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا