ترغب بنشر مسار تعليمي؟ اضغط هنا

A Characterization of the Lorentz space $L(p,r)$ in terms of Orlicz type classes

61   0   0.0 ( 0 )
 نشر من قبل Alberto Torchinsky
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the Lorentz space $L(p, r), 0 < r < p, p > 1$, in terms of Orlicz type classes of functions L . As a consequence of this result it follows that Steins characterization of the real functions on $R^n$ that are differentiable at almost all the points in $R^n$, is equivalent to the earlier characterization of those functions given by A. P. Calderon.



قيم البحث

اقرأ أيضاً

106 - Bowen Chen , Wanzhong Gong 2020
In this paper the necessary and sufficient conditions were given for Orlicz-Lorentz function space endowed with the Orlicz norm having non-squareness and local uniform non-squareness.
131 - Egor Kosov 2020
The paper studies the sampling discretization problem for integral norms on subspaces of $L^p(mu)$. Several close to optimal results are obtained on subspaces for which certain Nikolskii-type inequality is valid. The problem of norms discretization i s connected with the probabilistic question about the approximation with high probability of marginals of a high dimensional random vector by sampling. As a byproduct of our approach we refine the result of O. Gu$acute{e}$don and M. Rudelson concerning the approximation of marginals. In particular, the obtained improvement recovers a theorem of J. Bourgain, J. Lindenstrauss, and V. Milman concerning embeddings of finite dimensional subspaces of $L^p[0, 1]$ into $ell_p^m$. The proofs in the paper use the recent developments of the chaining technique by R. van Handel.
The approximation of functions in Orlicz space by multivariate operators on simplex is considered. The convergence rate is given by using modulus of smoothness.
Let $f in M_+(mathbb{R}_+)$, the class of nonnegative, Lebesgure-measurable functions on $mathbb{R}_+=(0, infty)$. We deal with integral operators of the form [ (T_Kf)(x)=int_{mathbb{R}_+}K(x,y)f(y), dy, quad x in mathbb{R}_+, ] with $K in M_+(mathbb{R}_+^2)$.
240 - T. Iwabuchi , T. Matsuyama , 2016
Let $H_V=-Delta +V$ be a Schrodinger operator on an arbitrary open set $Omega$ of $mathbb R^d$, where $d geq 3$, and $Delta$ is the Dirichlet Laplacian and the potential $V$ belongs to the Kato class on $Omega$. The purpose of this paper is to show $ L^p$-boundedness of an operator $varphi(H_V)$ for any rapidly decreasing function $varphi$ on $mathbb R$. $varphi(H_V)$ is defined by the spectral theorem. As a by-product, $L^p$-$L^q$-estimates for $varphi(H_V)$ are also obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا