ﻻ يوجد ملخص باللغة العربية
This paper introduces a micro-lattice based metamaterial for low frequency wide-band vibration attenuation, that is enabled by engineering the metamaterials building blocks to induce local resonance bandgaps for elastic waves in all directions of propagation. The transmission rate through the proposed structure is examined and strong wave attenuation is demonstrated for a remarkably small number of unit cells. Additionally, it is shown that the bandgaps are tailorable via the geometrical parameters and can be leveraged to design a hybrid metamaterial with an extremely wide bandgap. Alongside being thin, lightweight, and capable of attenuating elastic waves in all directions, the proposed material also possesses the second order functionality of exhibiting a negative Poissons ratio and can pave the way for identifying exotic functional materials.
We design a two-dimensional ultra-thin elastic metasurface consisting of steel cores coated with elliptical rubbers embedded in epoxy matrix, capable of manipulating bulk elastic wave modes for reflected waves. The energy exchanges between the longit
A numerical solver for the elastic wave eigenmodes in acoustic waveguides of inhomogeneous cross-section is presented. Operating under the assumptions of linear, isotropic materials, it utilizes a finite-difference method on a staggered grid to solve
We present a numerical study on an enhanced periodic auxetic metamaterial. Rotating squares mechanism allied to precompression induced buckling give these elastic structures exotic properties. The static properties of the reference structure and the
Hysteretic damping is often modeled by means of linear viscoelastic approaches such as nearly constant Attenuation (NCQ) models. These models do not take into account nonlinear effects either on the stiffness or on the damping, which are well known f
A simple procedure is demonstrated for fabrication of waveplates which can be released from substrate by laser cutting. Oblique angle deposition, chemical etching and laser inscription steps were used for the final lift-off and release of micro-waveplates in HCl solution.