ترغب بنشر مسار تعليمي؟ اضغط هنا

A Commentary on the Linearity and Time-Invariance of ODE-Based Systems

59   0   0.0 ( 0 )
 نشر من قبل Parker Ruth
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Linear time-invariant (LTI) systems appear frequently in natural sciences and engineering contexts. Many LTI systems are described by ordinary differential equations (ODEs). For example, biological gene regulation, analog filter circuits, and simple mechanical, electrical, and hydraulic systems can all be described with varying approximations as LTI systems using ODEs. While linearity and time-invariance are straightforward to demonstrate for closed-form system definitions, determining whether an ODE describes a system with LTI properties is less obvious and rarely discussed in depth in the literature. Complications arise due to slightly different definitions of linearity in different contexts. This commentary is intended to provide clarity on this subtle point, and act as an instructional aid or educational supplement.



قيم البحث

اقرأ أيضاً

We present a method for incremental modeling and time-varying control of unknown nonlinear systems. The method combines elements of evolving intelligence, granular machine learning, and multi-variable control. We propose a State-Space Fuzzy-set-Based evolving Modeling (SS-FBeM) approach. The resulting fuzzy model is structurally and parametrically developed from a data stream with focus on memory and data coverage. The fuzzy controller also evolves, based on the data instances and fuzzy model parameters. Its local gains are redesigned in real-time -- whenever the corresponding local fuzzy models change -- from the solution of a linear matrix inequality problem derived from a fuzzy Lyapunov function and bounded input conditions. We have shown one-step prediction and asymptotic stabilization of the Henon chaos.
This paper deals with the computation of the largest robust control invariant sets (RCISs) of constrained nonlinear systems. The proposed approach is based on casting the search for the invariant set as a graph theoretical problem. Specifically, a ge neral class of discrete-time time-invariant nonlinear systems is considered. First, the dynamics of a nonlinear system is approximated with a directed graph. Subsequently, the condition for robust control invariance is derived and an algorithm for computing the robust control invariant set is presented. The algorithm combines the iterative subdivision technique with the robust control invariance condition to produce outer approximations of the largest robust control invariant set at each iteration. Following this, we prove convergence of the algorithm to the largest RCIS as the iterations proceed to infinity. Based on the developed algorithms, an algorithm to compute inner approximations of the RCIS is also presented. A special case of input affine and disturbance affine systems is also considered. Finally, two numerical examples are presented to demonstrate the efficacy of the proposed method.
135 - Vahid Rezaei 2021
A graph theoretic framework recently has been proposed to stabilize interconnected multiagent systems in a distributed fashion, while systematically capturing the architectural aspect of cyber-physical systems with separate agent or physical layer an d control or cyber layer. Based on that development, in addition to the modeling uncertainties over the agent layer, we consider a scenario where the control layer is subject to the denial of service attacks. We propose a step-by-step procedure to design a control layer that, in the presence of the aforementioned abnormalities, guarantees a level of robustness and resiliency for the final two-layer interconnected multiagent system. The incorporation of an event-triggered strategy further ensures an effective use of the limited energy and communication resources over the control layer. We theoretically prove the resilient, robust, and Zeno-free convergence of all state trajectories to the origin and, via a simulation study, discuss the feasibility of the proposed ideas.
Reachable set computation is an important technique for the verification of safety properties of dynamical systems. In this paper, we investigate reachable set computation for discrete nonlinear systems based on parallelotope bundles. The algorithm r elies on computing an upper bound on the supremum of a nonlinear function over a rectangular domain, which has been traditionally done using Bernstein polynomials. We strive to remove the manual step of parallelotope template selection to make the method fully automatic. Furthermore, we show that changing templates dynamically during computations cans improve accuracy. To this end, we investigate two techniques for generating the template directions. The first technique approximates the dynamics as a linear transformation and generates templates using this linear transformation. The second technique uses Principal Component Analysis (PCA) of sample trajectories for generating templates. We have implemented our approach in a Python-based tool called Kaa and improve its performance by two main enhancements. The tool is modular and use two types of global optimization solvers, the first using Bernstein polynomials and the second using NASAs Kodiak nonlinear optimization library. Second, we leverage the natural parallelism of the reachability algorithm and parallelize the Kaa implementation. We demonstrate the improved accuracy of our approach on several standard nonlinear benchmark systems.
The uncertainty in distributed renewable generation poses security threats to the real-time operation of distribution systems. The real-time dispatchable region (RTDR) can be used to assess the ability of power systems to accommodate renewable genera tion at a given base point. DC and linearized AC power flow models are typically used for bulk power systems, but they are not suitable for low-voltage distribution networks with large r/x ratios. To balance accuracy and computational efficiency, this paper proposes an RTDR model of AC distribution networks using tight convex relaxation. Convex hull relaxation is adopted to reformulate the AC power flow equations, and the convex hull is approximated by a polyhedron without much loss of accuracy. Furthermore, an efficient adaptive constraint generation algorithm is employed to construct an approximate RTDR to meet the requirements of real-time dispatch. Case studies on the modified IEEE 33-bus distribution system validate the computational efficiency and accuracy of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا