ﻻ يوجد ملخص باللغة العربية
Advanced MAVKA software for the approximation of extrema observations is used to analyze the variability of the brightness of pulsating and eclipsing stars, but may be useful in analyzing signals of any nature. A new algorithm using a parabolic (quadratic) spline is proposed. In contrast to the traditional definition of a spline as a piecewise-defined function at fixed intervals, a spline is proposed to be divided into three intervals, but the positions of the boundaries between the intervals are additional parameters. The spline defect is 1, that is, the function and its first derivative are continuous and the second derivative can be discontinuous at the boundaries. Such a function is an enhancement of the asymptotic parabola (Marsakova and Andronov 1996). The dependence of the fixed signal approximation accuracy on the location of the boundaries of the interval is considered. The parameter accuracy estimates using the least squares method and bootstrap are compared. The variability of the semi-regular pulsating star Z UMa is analyzed. The presence of multicomponent variability of an object, including, four periodic oscillations and significant variability of the amplitudes and phases of individual oscillations is shown.
We introduce the program MAVKA for determination of characteristics of extrema using observations in the adjacent data intervals, with intended applications to variable stars, but it may be used for signals of arbitrary nature. We have used a dozen o
Multiple algorithms of time series analysis are briefly reviewed and partially illustrated by application to the visual observations of the semi-regular variable DY Per from the AFOEV database. These algorithms were implemented in the software MCV (A
Let us say that an $n$-sided polygon is semi-regular if it is circumscriptible and its angles are all equal but possibly one, which is then larger than the rest. Regular polygons, in particular, are semi-regular. We prove that semi-regular polygons a
The structural and dynamical properties of star clusters are generally derived by means of the comparison between steady-state analytic models and the available observables. With the aim of studying the biases of this approach, we fitted different an
SU UMa stars are characterized by superoutbursts which are brighter at maximum light and which last much longer than the more frequent ordinary outbursts of these dwarf novae. Although there are now more than 1180 SU UMa type dwarf novae catalogued,