ﻻ يوجد ملخص باللغة العربية
Within the GASP survey, aimed at studying the effect of the ram-pressure stripping on the star formation quenching in cluster galaxies, we analyze here ALMA observations of the jellyfish galaxy JW100. We find an unexpected large amount of molecular gas ($sim 2.5 times 10^{10} M_{odot}$), 30% of which is located in the stripped gas tail out to $sim$35 kpc from the galaxy center. The overall kinematics of molecular gas is similar to the one shown by the ionized gas, but for clear signatures of double components along the stripping direction detected only out to 2 kpc from the disk. The line ratio $r_{21}$ has a clumpy distribution and in the tail can reach large values ($geq 1$), while its average value is low (0.58 with a 0.15 dispersion). All these evidence strongly suggest that the molecular gas in the tail is newly born from stripped HI gas or newly condensed from stripped diffuse molecular gas. The analysis of interferometric data at different scales reveals that a significant fraction ($sim 40%$) of the molecular gas is extended over large scales ($geq 8$ kpc) in the disk, and this fraction becomes predominant in the tail ($sim 70%$). By comparing the molecular gas surface density with the star formation rate surface density derived from the Ha emission from MUSE data, we find that the depletion time on 1 kpc scale is particularly large ($5-10$ Gyr) both within the ram-pressure disturbed region in the stellar disk, and in the complexes along the tail.
We present the first high-resolution map of the cold molecular gas distribution, as traced by CO(2-1) emission with ALMA, in a prominent ram pressure stripped tail. The Norma cluster galaxy ESO 137-001 is undergoing a strong interaction with the surr
In the disks of four jellyfish galaxies from the GASP sample at redshift $sim 0.05$ we detect molecular gas masses systematically higher than in field galaxies. These galaxies are being stripped of their gas by ram pressure from the intra cluster med
The standard AGN-galaxy co-evolutionary scenario predicts a phase of deeply buried supermassive black hole growth coexisting with a starburst (SB) before feedback phenomena deplete the cold molecular gas reservoir of the galaxy and an optically lumin
X-ray studies of jellyfish galaxies play a crucial role in understanding the interactions between the interstellar medium (ISM) and the intracluster medium (ICM). In this paper, we focused on the jellyfish galaxy JO201. By combining archival Chandra
Jellyfish galaxies in clusters are key tools to understand environmental processes at work in dense environments. The advent of Integral Field Spectroscopy has recently allowed to study a significant sample of stripped galaxies in the cluster environ