ترغب بنشر مسار تعليمي؟ اضغط هنا

Amplification by stimulated emission of nitrogen vacancy centres in a diamond-loaded fibre cavity

216   0   0.0 ( 0 )
 نشر من قبل Sarath Raman Nair
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laser-threshold magetometry using the negatively charged nitrogen-vacancy (NV-) centre in diamond as a gain medium has been proposed as a technique to dramatically enhance the sensitivity of room-temperature magnetometry. We experimentally explore a diamond-loaded open tunable fibre-cavity system as a potential contender for the realization of lasing with NV- centres. We observe amplification of the transmission of a cavity-resonant seed laser at 721 nm when the cavity is pumped at 532 nm, and attribute this to stimulated emission. Changes in the intensity of spontaneously emitted photons accompany the amplification, and a qualitative model including stimulated emission and ionisation dynamics of the NV- centre captures the dynamics in the experiment very well. These results highlight important considerations in the realization of an NV- laser in diamond.



قيم البحث

اقرأ أيضاً

125 - F. Hahl , L. Lindner , X. Vidal 2021
Negatively charged nitrogen-vacancy centres in diamond are promising quantum magnetic field sensors. Laser threshold magnetometry has been a theoretical approach for the improvement of NV-centre ensemble sensitivity via increased signal strength and magnetic field contrast. In this work we experimentally demonstrate laser threshold magnetometry. We use a macroscopic high-finesse laser cavity containing a highly NV-doped and low absorbing diamond gain medium that is pumped at 532nm and resonantly seeded at 710nm. This enables amplification of the signal power by stimulated emission of 64%. We show the magnetic-field dependency of the amplification and thus, demonstrate magnetic-field dependent stimulated emission from an NV-centre ensemble. This emission shows a record contrast of 33% and a maximum output power in the mW regime. These advantages of coherent read-out of NV-centres pave the way for novel cavity and laser applications of quantum defects as well as diamond NV magnetic field sensors with significantly improved sensitivity for the health, research and mining sectors.
Stimulated emission is the process fundamental to laser operation, thereby producing coherent photon output. Despite negatively-charged nitrogen-vacancy (NV$^-$) centres being discussed as a potential laser medium since the 1980s, there have been no definitive observations of stimulated emission from ensembles of NV$^-$ to date. Reasons for this lack of demonstration include the short excited state lifetime and the occurrence of photo-ionisation to the neutral charge state by light around the zero-phonon line. Here we show both theoretical and experimental evidence for stimulated emission from NV$^-$ states using light in the phonon-sidebands. Our system uses a continuous wave pump laser at 532 nm and a pulsed stimulating laser that is swept across the phononic sidebands of the NV$^-$. Optimal stimulated emission is demonstrated in the vicinity of the three-phonon line at 700 nm. Furthermore, we show the transition from stimulated emission to photoionisation as the stimulating laser wavelength is reduced from 700nm to 620 nm. While lasing at the zero-phonon line is suppressed by ionisation, our results open the possibility of diamond lasers based on NV centres, tuneable over the phonon-sideband. This broadens the applications of NV magnetometers from single centre nanoscale sensors to a new generation of ultra-precise ensemble laser sensors, which exploit the contrast and signal amplification of a lasing system.
215 - J. Twamley , S. D. Barrett 2009
Circuit-QED has demonstrated very strong coupling between individual microwave photons trapped in a superconducting coplanar resonator and nearby superconducting qubits. In this work we show how, by designing a novel interconnect, one can strongly co nnect the superconducting resonator, via a magnetic interaction, to a small number (perhaps single), of electronic spins. By choosing the electronic spin to be within a Nitrogen Vacancy centre in diamond one can perform optical readout, polarization and control of this electron spin using microwave and radio frequency irradiation. More importantly, by utilising Nitrogen Vacancy centres with nearby 13C nuclei, using this interconnect, one has the potential build a quantum device where the nuclear spin qubits are connected over centimeter distances via the Nitrogen Vacancy electronic spins interacting through the superconducting bus.
We employ a fiber-based optical microcavity with high finesse to study the enhancement of phonon sideband fluorescence of nitrogen-vacancy centers in nanodiamonds. Harnessing the full tunability and open access of the resonator, we explicitly demonst rate the scaling laws of the Purcell enhancement by varying both the mode volume and the quality factor over a large range. While changes in the emission lifetime remain small in the regime of a broadband emitter, we observe an increase of the emission spectral density by up to a factor of 300. This gives a direct measure of the Purcell factor that could be achieved with this resonator and an emitter whose linewidth is narrower than the cavity linewidth. Our results show a method for the realization of wavelength-tunable narrow-band single-photon sources and demonstrate a system that has the potential to reach the strong-coupling regime.
We theoretically analyse the cooling dynamics of a high-Q mode of a mechanical resonator, when the structure is also an optical cavity and is coupled with a NV center. The NV center is driven by a laser and interacts with the cavity photon field and with the strain field of the mechanical oscillator, while radiation pressure couples mechanical resonator and cavity field. Starting from the full master equation we derive the rate equation for the mechanical resonators motion, whose coefficients depend on the system parameters and on the noise sources. We then determine the cooling regime, the cooling rate, the asymptotic temperatures, and the spectrum of resonance fluorescence for experimentally relevant parameter regimes. For these parameters, we consider an electronic transition, whose linewidth allows one to perform sideband cooling, and show that the addition of an optical cavity in general does not improve the cooling efficiency. We further show that pure dephasing of the NV centers electronic transitions can lead to an improvement of the cooling efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا