ﻻ يوجد ملخص باللغة العربية
We study by extensive numerical simulations the dynamics of a hard-core tracer particle (TP) in presence of two competing types of disorder - frozen convection flows on a square random Manhattan lattice and a crowded dynamical environment formed by a lattice gas of mobile hard-core particles. The latter perform lattice random walks, constrained by a single-occupancy condition of each lattice site, and are either insensitive to random flows (model A) or choose the jump directions as dictated by the local directionality of bonds of the random Manhattan lattice (model B). We focus on the TP disorder-averaged mean-squared displacement, (which shows a super-diffusive behaviour $sim t^{4/3}$, $t$ being time, in all the cases studied here), on higher moments of the TP displacement, and on the probability distribution of the TP position $X$ along the $x$-axis. Our analysis evidences that in absence of the lattice gas particles the latter has a Gaussian central part $sim exp(- u^2)$, where $u = X/t^{2/3}$, and exhibits slower-than-Gaussian tails $sim exp(-|u|^{4/3})$ for sufficiently large $t$ and $u$. Numerical data convincingly demonstrate that in presence of a crowded environment the central Gaussian part and non-Gaussian tails of the distribution persist for both models.
We summarise different results on the diffusion of a tracer particle in lattice gases of hard-core particles with stochastic dynamics, which are confined to narrow channels -- single-files, comb-like structures and quasi-one-dimensional channels with
In the randomly-oriented Manhattan lattice, every line in $mathbb{Z}^d$ is assigned a uniform random direction. We consider the directed graph whose vertex set is $mathbb{Z}^d$ and whose edges connect nearest neighbours, but only in the direction fix
We study the finite-time dynamics of an initially localized wave-packet in the Anderson model on the random regular graph (RRG). Considering the full probability distribution $Pi(x,t)$ of a particle to be at some distance $x$ from the initial state a
We derive equations of motion for the mean-squared displacement (MSD) of an active Brownian particle (ABP) in a crowded environment modeled by a dense system of passive Brownian particles, and of a passive tracer particle in a dense active-Brownian p
The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic regime. Refining arguments of Bleher, R