ﻻ يوجد ملخص باللغة العربية
The relativistic coupled-cluster (RCC) method is a powerful many-body method, particularly in the evaluation of electronic wave functions of heavy atoms and molecules, and can be used to calculate various atomic and molecular properties. One such atomic property is the enhancement factor (R) of the atomic electric dipole moment (EDM) due to an electron EDM needed in electron EDM searches. The EDM of the electron is a sensitive probe of CP-violation, and its search could provide insights into new physics beyond the Standard Model, as well as open questions in cosmology. Electron EDM searches using atoms require the theoretical evaluation of R to provide an upper limit for the magnitude of the electron EDM. In this work, we calculate R of 210Fr in the ground state using an improved RCC method, and perform an analysis on the many-body processes occurring within the system. The RCC method allows one to capture the effects of both the electromagnetic interaction and P- and T-violating interactions, and our work develops this method beyond what had been implemented in the previous works. We also perform calculations of hyperfine structure constants, electric dipole transition matrix elements, and excitation energies, to assess the accuracy of R and the success of our improved method. Finally, we present calculations of R with corrections due to Breit interaction effects, approximate quantum electrodynamics (QED) effects, and some leading triple excitation terms added perturbatively, to assess how significantly these terms contribute to the result. We obtain a final value of R = 799, with an estimated 3% error, which is about 11% smaller than a previously reported theoretical calculation.
Polyatomic polar molecules are promising systems for future experiments that search for violation of time-reversal and parity symmetries due to their advantageous electronic and vibrational structure, which allows laser cooling, full polarisation of
If electrons had an electric dipole moment (EDM) they would induce EDMs of atoms. The ratio of the atomic EDM to the electron EDM for a particular atom is called the enhancement factor, R. We calculate the enhancement factor for the francium and gold
Nuclear electric dipole moments of $^{3}He$ and $^{3}H$ are calculated using Time Reversal Invariance Violating (TRIV) potentials based on the meson exchange theory, as well as the ones derived by using pionless and pionful effective field theories,
We recently set a new limit on the electric dipole moment of the electron (eEDM) (J. Baron et al., ACME collaboration, Science 343 (2014), 269-272), which represented an order-of-magnitude improvement on the previous limit and placed more stringent c
We investigate ground state properties of singly charged chlorine (Cl$^-$) and gold (Au$^-$) negative ions by employing four-component relativistic many-body methods. In our approach, we attach an electron to the respective outer orbitals of chlorine