ﻻ يوجد ملخص باللغة العربية
We present a detailed analysis of three XMM-Newton observations of the black hole low-mass X-ray binary IGR~J17091-3624 taken during its 2016 outburst. Radio observations obtained with the Australia Telescope Compact Array (ATCA) indicate the presence of a compact jet during all observations. From the best X-ray data fit results we concluded that the observations were taken during a transition from a hard accretion state to a hard-intermediate accretion state. For Observations 1 and 2 a local absorber can be identified in the EPIC-pn spectra but not in the RGS spectra, preventing us from distinguishing between absorption local to the source and that from the hot ISM component. For Observation 3, on the other hand, we have identified an intrinsic ionized static absorber in both EPIC-pn and RGS spectra. The absorber, observed simultaneously with a compact jet emission, is characterized by an ionization parameter of 1.96< log({xi}) <2.05 and traced mainly by Ne X, Mg XII, Si XIII and Fe XVIII.
We present a spectral and timing study of the NuSTAR and Swift observations of the black hole candidate IGR J17091-3624 in the hard state during its outburst in 2016. Disk reflection is detected in each of the NuSTAR spectra taken in three epochs. Fi
{it Chandra} spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk--dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observ
We report on the first 180 days of RXTE observations of the outburst of the black hole candidate IGR J17091-3624. This source exhibits a broad variety of complex light curve patterns including periods of strong flares alternating with quiet intervals
We performed an analysis of all RXTE observations of the Low Mass X-ray Binary and Black Hole Candidate IGR J17091-3624 during the 2011-2013 outburst of the source. By creating lightcurves, hardness-intensity diagrams and power density spectra of eac
We report on two short XMM-Newton observations performed in August 2006 and February 2007 during the quiescence state of the enigmatic black hole candidate system IGR J17091-3624. During both observations the source was clearly detected. Although the