ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary States for Chiral Symmetries in Two Dimensions

101   0   0.0 ( 0 )
 نشر من قبل David Tong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study boundary states for Dirac fermions in d=1+1 dimensions that preserve Abelian chiral symmetries, meaning that the left- and right-moving fermions carry different charges. We derive simple expressions, in terms of the fermion charge assignments, for the boundary central charge and for the ground state degeneracy of the system when two different boundary conditions are imposed at either end of an interval. We show that all such boundary states fall into one of two classes, related to SPT phases supported by (-1)^F, which are characterised by the existence of an unpaired Majorana zero mode.



قيم البحث

اقرأ أيضاً

In the last few years it was realized that every fermionic theory in 1+1 dimensions is a generalized Jordan-Wigner transform of a bosonic theory with a non-anomalous $mathbb{Z}_2$ symmetry. In this note we determine how the boundary states are mapped under this correspondence. We also interpret this mapping as the fusion of the original boundary with the fermionization interface.
Two-dimensional SU$(N)$ gauge theory coupled to a Majorana fermion in the adjoint representation is a nice toy model for higher-dimensional gauge dynamics. It possesses a multitude of gluinoball bound states whose spectrum has been studied using nume rical diagonalizations of the light-cone Hamiltonian. We extend this model by coupling it to $N_f$ flavors of fundamental Dirac fermions (quarks). The extended model also contains meson-like bound states, both bosonic and fermionic, which in the large-$N$ limit decouple from the gluinoballs. We study the large-$N$ meson spectrum using the Discretized Light-Cone Quantization (DLCQ). When all the fermions are massless, we exhibit an exact $mathfrak{osp}(1|4)$ symmetry algebra that leads to an infinite number of degeneracies in the DLCQ approach. More generally, we show that many single-trace states in the theory are threshold bound states that are degenerate with multi-trace states. These exact degeneracies can be explained using the Kac-Moody algebra of the SU$(N)$ current. We also present strong numerical evidence that additional threshold states appear in the continuum limit. Finally, we make the quarks massive while keeping the adjoint fermion massless. In this case too, we observe some exact degeneracies that show that the spectrum of mesons becomes continuous above a certain threshold. This demonstrates quantitatively that the fundamental string tension vanishes in the massless adjoint QCD$_2$.
A global symmetry of a quantum field theory is said to have an t Hooft anomaly if it cannot be promoted to a local symmetry of a gauged theory. In this paper, we show that the anomaly is also an obstruction to defining symmetric boundary conditions. This applies to Lorentz symmetries with gravitational anomalies as well. For theories with perturbative anomalies, we demonstrate the obstruction by analyzing the Wess-Zumino consistency conditions and current Ward identities in the presence of a boundary. We then recast the problem in terms of symmetry defects and find the same conclusions for anomalies of discrete and orientation-reversing global symmetries, up to the conjecture that global gravitational anomalies, which may not be associated with any diffeomorphism symmetry, also forbid the existence of boundary conditions. This conjecture holds for known gravitational anomalies in $D le 3$ which allows us to conclude the obstruction result for $D le 4$.
Continuum models for time-reversal (TR) invariant topological insulators (TIs) in $d geq 3$ dimensions are provided by harmonic oscillators coupled to certain $SO(d)$ gauge fields. These models are equivalent to the presence of spin-orbit (SO) intera ction in the oscillator Hamiltonians at a critical coupling strength (equivalent to the harmonic oscillator frequency) and leads to flat Landau Level (LL) spectra and therefore to infinite degeneracy of either the positive or the negative helicity states depending on the sign of the SO coupling. Generalizing the results of Haaker et al. to $d geq 4$, we construct vector operators commuting with these Hamiltonians and show that $SO(d,2)$ emerges as the non-compact extended dynamical symmetry. Focusing on the model in four dimensions, we demonstrate that the infinite degeneracy of the flat spectra can be fully explained in terms of the discrete unitary representations of $SO(4,2)$, i.e. the {it doubletons}. The degeneracy in the opposite helicity branch is finite, but can still be explained exploiting the complex conjugate {it doubleton} representations. Subsequently, the analysis is generalized to $d$ dimensions, distinguishing the cases of odd and even $d$. We also determine the spectrum generating algebra in these models and briefly comment on the algebraic organization of the LL states w.r.t to an underlying deformed AdS geometry as well as on the organization of the surface states under open boundary conditions in view of our results.
101 - Tianhao Ren , Igor Aleiner 2016
We investigate the possible existence of the bound state in the system of three bosons interacting with each other via zero-radius potentials in two dimensions (it can be atoms confined in two dimensions or tri-exciton states in heterostructures or d ihalogenated materials). The bosons are classified in two species (a,b) such that a-a and b-b pairs repel each other and a-b attract each other, forming the two-particle bound state with binding energy $epsilon_b^{(2)}$ (such as bi-exciton). We developed an efficient routine based on the proper choice of basis for analytic and numerical calculations. For zero-angular momentum we found the energies of the three-particle bound states $epsilon^{(3)}_b$ for wide ranges of the scattering lengths, and found a universal curve of $epsilon^{(3)}_b/epsilon^{(2)}_b$ which depends only on the scattering lengths but not the microscopic details of the interactions, this is in contrast to the three-dimensional Efimov effect, where a non-universal three-body parameter is needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا