ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting pre-inflationary universe of family of $alpha-$attractor in loop quantum cosmology

63   0   0.0 ( 0 )
 نشر من قبل Mohd Shahalam
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we revisit the dynamics of pre-inflationary universe with a family of $alpha-$attractor potentials, in the framework of loop quantum cosmology, in which the big bang singularity is generically resolved purely with quantum geometric effects, and replaced by a quantum bounce. At the bounce, the background evolution is divided into two distinct classes, the first is dominated by the kinetic energy of the inflaton field and the second by the potential energy. In both classes, we find the physically viable initial conditions numerically that provide not only the slow-roll inflation, but also sufficient e-folds to be compatible with observations. In the entire range of kinetic energy dominated initial conditions (except some subsets of Models 2 and 4), the background evolution prior to reheating is always split into three different phases: bouncing, transition and slow-roll inflation. In the bouncing phase, the numerical evolution of the scale factor is independent not only of the initial data, but also the inflationary potentials, as long as it is dominated by the kinetic energy, and can be well approximated by an analytical solution, whereas in the potential energy dominated case, such approximated results do not exist. Moreover, we study the phase space analysis for a class of $alpha-$attractor potentials, and discuss the phase space trajectories for physically viable initial conditions of the inflaton field.



قيم البحث

اقرأ أيضاً

74 - Artur Alho , Claes Uggla 2017
We study flat FLRW $alpha$-attractor $mathrm{E}$- and $mathrm{T}$-models by introducing a dynamical systems framework that yields regularized unconstrained field equations on two-dimensional compact state spaces. This results in both illustrative fig ures and a complete description of the entire solution spaces of these models, including asymptotics. In particular, it is shown that observational viability, which requires a sufficient number of $e$-folds, is associated with a solution given by a one-dimensional center manifold of a past asymptotic de Sitter state, where the center manifold structure also explains why nearby solutions are attracted to this `inflationary attractor solution. A center manifold expansion yields a description of the inflationary regime with arbitrary analytic accuracy, where the slow-roll approximation asymptotically describes the tangency condition of the center manifold at the asymptotic de Sitter state.
We derive the primordial power spectra and spectral indexes of the density fluctuations and gravitational waves in the framework of loop quantum cosmology (LQC) with holonomy and inverse-volume corrections, by using the uniform asymptotic approximati on method to its third-order, at which the upper error bounds are $lesssim 0.15%$, and accurate enough for the current and forthcoming cosmological observations. Then, using the Planck, BAO and SN data we obtain the tightest constraints on quantum gravitational effects from LQC corrections, and find that such effects could be well within the detection of the current and forthcoming cosmological observations.
Warm inflation is analyzed in the context of Loop Quantum Cosmology (LQC). The bounce in LQC provides a mean through which a Liouville measure can be defined, which has been used previously to characterize the a priori probability for inflation in LQ C. Here we take advantage of the tools provided by LQC to study instead the a priori probability for warm inflation dynamics in the context of a monomial quartic inflaton potential. We study not only the question of how a general warm inflation dynamics can be realized in LQC with an appropriate number of e-folds, but also how such dynamics is constrained to be in agreement with the latest cosmic microwave background radiation from Planck. The fraction of warm inflation trajectories in LQC that gives both the required minimum amount e-folds of expansion and also passes through the observational window of allowed values for the tensor-to-scalar ratio and the spectral tilt is explicitly obtained. We find that the probability of warm inflation with a monomial quartic potential in LQC is higher than that of cold inflation in the same context. Furthermore, we also obtain that the a priori probability gets higher as the inherent dissipation of the warm inflation dynamics increases.
We study oscillatory universes within the context of Loop Quantum Cosmology. We make a comparative study of flat and positively curved universes sourced by scalar fields with either positive or negative potentials. We investigate how oscillating univ erses can set the initial conditions for successful slow-roll inflation, while ensuring that the semi-classical bounds are satisfied. We observe rich oscillatory dynamics with negative potentials, although it is difficult to respect the semi-classical bounds in models of this type.
We investigate the gravitational particle production in the bounce phase of Loop Quantum Cosmology (LQC). We perform both analytical and numerical analysis of the particle production process in a LQC scenario with Bunch-Davies vacuum initial conditio n in the contracting phase. We obtain that if we extend the validity of the dressed metric approach beyond the limit of small backreaction in which it is well justified, this process would lead to a radiation dominated phase in the pre-inflationary phase of LQC. Our results indicate that the test field approximation, which is required in the truncation scheme used in the dressed metric approach, might not be a valid assumption in a LQC scenario with such initial conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا