ﻻ يوجد ملخص باللغة العربية
We proposed that BaHgSn is a Dirac semimetal (DSM) which can host hourglass-like surface states (HSSs) as protected by nonsymmorphic glide symmetry. Compared to KHgSb, an isostructural topological crystalline insulator with the same HSSs, BaHgSn has an additional band inversion at $Gamma$ point. This band inversion is induced by the stronger interlayer coupling among Hg-Sn honeycomb layers than that among Hg-Sb-layers in KHgSb, which leads to bulk Dirac nodes in BaHgSn along the layer stacking direction $Gamma$-$A$. In addition, the mirror Chern number $C_{i}$ protected by the mirror plane $overline{M}_{z}$ ($k_z$=0) changes from 2 in KHgSb to 3 in BaHgSn. Therefore, when a compressive uniaxial strain is applied along the $y$ axis to break the rotation symmetry protecting the DSM state, BaHgSn becomes a strong topological insulator with $Z_{2}$ indices of $(1;000)$ and the topological surface Dirac cone co-exists with HSSs on the (010) surface. The Wilson-loop spectra have been calculated to verify these topological features. The calculated surface states, the Fermi surfaces and their quasiparticle interference patterns are ready to be compared with experimental measurements.
The analogues of elementary particles have been extensively searched for in condensed matter systems because of both scientific interests and technological applications. Recently massless Dirac fermions were found to emerge as low energy excitations
Materials with triply-degenerate nodal points in their low-energy electronic spectrum produce crystalline-symmetry-enforced three-fold fermions, which conceptually lie between the two-fold Weyl and four-fold Dirac fermions. Here we show how a silver-
Topological Dirac and Weyl semimetals not only host quasiparticles analogous to the elementary fermionic particles in high-energy physics, but also have nontrivial band topology manifested by exotic Fermi arcs on the surface. Recent advances suggest
Using spin-resolved and angle-resolved photoemission spectroscopy and first-principles calculations, we have identified bulk band inversion and spin polarized surface state evolved from a weak topological insulator (TI) phase in van der Waals materia