ﻻ يوجد ملخص باللغة العربية
In the setting of Carnot groups, we are concerned with the rectifiability problem for subsets that have finite sub-Riemannian perimeter. We introduce a new notion of rectifiability that is possibly, weaker than the one introduced by Franchi, Serapioni, and Serra Cassano. Namely, we consider subsets $Gamma$ that, similarly to intrinsic Lipschitz graphs, have a cone property: there exists an open dilation-invariant subset $C$ whose translations by elements in $Gamma$ dont intersect $Gamma$. However, a priori the cone $C$ may not have any horizontal directions in its interior. In every Carnot group, we prove that the reduced boundary of every finite-perimeter subset can be covered by countably many subsets that have such a cone property. The cones are related to the semigroups generated by the horizontal half-spaces determined by the normal directions. We further study the case when one can find horizontal directions in the interior of the cones, in which case we infer that finite-perimeter subsets are countably rectifiable with respect to intrinsic Lipschitz graphs. A sufficient condition for this to hold is the existence of a horizontal one-parameter subgroup that is not an abnormal curve. As an application, we verify that this property holds in every filiform group, of either first or second type.
We consider sets of locally finite perimeter in Carnot groups. We show that if E is a set of locally finite perimeter in a Carnot group G, then for almost every x in G with respect to the perimeter measure of E, some tangent of E at x is a vertical h
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We
We analyze subsets of Carnot groups that have intrinsic constant normal, as they appear in the blowup study of sets that have finite sub-Riemannian perimeter. The purpose of this paper is threefold. First, we prove some mild regularity and structural
The overarching goal of this paper is to link the notion of sets of finite perimeter (a concept associated with $N^{1,1}$-spaces) and the theory of heat semigroups (a concept related to $N^{1,2}$-spaces) in the setting of metric measure spaces whose
This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic: such a ph