ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-supervised Visual Feature Integration for Pre-trained Language Models

118   0   0.0 ( 0 )
 نشر من قبل Lisai Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrating visual features has been proved useful for natural language understanding tasks. Nevertheless, in most existing multimodal language models, the alignment of visual and textual data is expensive. In this paper, we propose a novel semi-supervised visual integration framework for pre-trained language models. In the framework, the visual features are obtained through a visualization and fusion mechanism. The uniqueness includes: 1) the integration is conducted via a semi-supervised approach, which does not require aligned images for every sentences 2) the visual features are integrated as an external component and can be directly used by pre-trained language models. To verify the efficacy of the proposed framework, we conduct the experiments on both natural language inference and reading comprehension tasks. The results demonstrate that our mechanism brings improvement to two strong baseline models. Considering that our framework only requires an image database, and no not requires further alignments, it provides an efficient and feasible way for multimodal language learning.



قيم البحث

اقرأ أيضاً

436 - Yusheng Su , Xu Han , Yankai Lin 2021
Fine-tuning pre-trained language models (PLMs) has demonstrated its effectiveness on various downstream NLP tasks recently. However, in many low-resource scenarios, the conventional fine-tuning strategies cannot sufficiently capture the important sem antic features for downstream tasks. To address this issue, we introduce a novel framework (named CSS-LM) to improve the fine-tuning phase of PLMs via contrastive semi-supervised learning. Specifically, given a specific task, we retrieve positive and negative instances from large-scale unlabeled corpora according to their domain-level and class-level semantic relatedness to the task. We then perform contrastive semi-supervised learning on both the retrieved unlabeled and original labeled instances to help PLMs capture crucial task-related semantic features. The experimental results show that CSS-LM achieves better results than the conventional fine-tuning strategy on a series of downstream tasks with few-shot settings, and outperforms the latest supervised contrastive fine-tuning strategies. Our datasets and source code will be available to provide more details.
114 - Yujia Qin , Yankai Lin , Jing Yi 2021
Recent explorations of large-scale pre-trained language models (PLMs) such as GPT-3 have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, training a large-scale PLM requires tremend ous amounts of computational resources, which is time-consuming and expensive. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring the availability of many existing well-trained PLMs. To this end, we explore the question that how can previously trained PLMs benefit training larger PLMs in future. Specifically, we introduce a novel pre-training framework named knowledge inheritance (KI), which combines both self-learning and teacher-guided learning to efficiently train larger PLMs. Sufficient experimental results demonstrate the feasibility of our KI framework. We also conduct empirical analyses to explore the effects of teacher PLMs pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI can well support lifelong learning and knowledge transfer.
Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i n pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge a re contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models commonsense ability while bi-directional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CATs publicly, for future research.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its re search progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا