ﻻ يوجد ملخص باللغة العربية
Integrating visual features has been proved useful for natural language understanding tasks. Nevertheless, in most existing multimodal language models, the alignment of visual and textual data is expensive. In this paper, we propose a novel semi-supervised visual integration framework for pre-trained language models. In the framework, the visual features are obtained through a visualization and fusion mechanism. The uniqueness includes: 1) the integration is conducted via a semi-supervised approach, which does not require aligned images for every sentences 2) the visual features are integrated as an external component and can be directly used by pre-trained language models. To verify the efficacy of the proposed framework, we conduct the experiments on both natural language inference and reading comprehension tasks. The results demonstrate that our mechanism brings improvement to two strong baseline models. Considering that our framework only requires an image database, and no not requires further alignments, it provides an efficient and feasible way for multimodal language learning.
Fine-tuning pre-trained language models (PLMs) has demonstrated its effectiveness on various downstream NLP tasks recently. However, in many low-resource scenarios, the conventional fine-tuning strategies cannot sufficiently capture the important sem
Recent explorations of large-scale pre-trained language models (PLMs) such as GPT-3 have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, training a large-scale PLM requires tremend
Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge a
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its re