ﻻ يوجد ملخص باللغة العربية
The selective excitation of coherent phonons provides unique capabilities to control fundamental properties of quantum materials on ultrafast time scales. For instance, in the presence of strong electron-phonon coupling, the electronic band structure can become substantially modulated. Recently, it was predicted that by this means even topologically protected states of matter can be manipulated and, ultimately, be destroyed: For the layered transition metal dichalcogenide Td-WTe$_2$, pairs of Weyl points are expected to annihilate as an interlayer shear mode drives the crystalline structure towards a centrosymmetric phase. By monitoring the changes in the electronic structure of Td-WTe$_2$ with femtosecond resolution, we provide here direct experimental evidence that the coherent excitation of the shear mode acts on the electronic states near the Weyl points. Band structure data in comparison with our results imply, furthermore, the periodic reduction in the spin splitting of bands near the Fermi energy, a distinct electronic signature of the non-centrosymmetric Td ground state of WTe$_2$. The comparison with higher-frequency coherent phonon modes finally proves the shear mode-selectivity of the observed changes in the electronic structure. Our real-time observations reveal direct experimental insights into electronic processes that are of vital importance for a coherent phonon-induced topological phase transition in Td-WTe$_2$.
We perform ultrahigh resolution angle-resolved photoemission experiments at a temperature T=0.8 K on the type-II Weyl semimetal candidate WTe$_{2}$. We find a surface Fermi arc connecting the bulk electron and hole pockets on the (001) surface. Our r
By combining bulk sensitive soft-X-ray angular-resolved photoemission spectroscopy and accurate first-principles calculations we explored the bulk electronic properties of WTe$_2$, a candidate type-II Weyl semimetal featuring a large non-saturating m
Currently, there is a flurry of research interest on materials with an unconventional electronic structure, and we have already seen significant progress in their understanding and engineering towards real-life applications. The interest erupted with
Laser-based angle-resolved photoemission spectroscopy (ARPES) and two-photon photoemission spectroscopy (2PPES) are employed to study the valence electronic structure of the Weyl semimetal candidate Td-WTe$_2$ along two high symmetry directions and f
We report electron transport studies in an encapsulated few-layer WTe$_2$ at low temperatures and high magnetic fields. The magnetoconductance reveals a temperature-induced crossover between weak antilocalization (WAL) and weak localization (WL) in q