ترغب بنشر مسار تعليمي؟ اضغط هنا

Enabling real-time multi-messenger astrophysics discoveries with deep learning

262   0   0.0 ( 0 )
 نشر من قبل Eliu Huerta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos. In this Expert Recommendation, we review the key challenges of real-time observations of gravitational wave sources and their electromagnetic and astroparticle counterparts, and make a number of recommendations to maximize their potential for scientific discovery. These recommendations refer to the design of scalable and computationally efficient machine learning algorithms; the cyber-infrastructure to numerically simulate astrophysical sources, and to process and interpret multi-messenger astrophysics data; the management of gravitational wave detections to trigger real-time alerts for electromagnetic and astroparticle follow-ups; a vision to harness future developments of machine learning and cyber-infrastructure resources to cope with the big-data requirements; and the need to build a community of experts to realize the goals of multi-messenger astrophysics.



قيم البحث

اقرأ أيضاً

Flares of known astronomical sources and new transient phenomena occur on different timescales, from sub-seconds to several days or weeks. The discovery potential of both serendipitous observations and multi-messenger and multi-wavelength follow-up o bservations could be maximized with a tool which allows for quickly acquiring an overview over both persistent sources as well as transient events in the relevant phase space. We here present COincidence LIBrary for Real-time Inquiry (Astro-COLIBRI), a novel and comprehensive tool for this task. Astro-COLIBRIs architecture comprises a RESTful API, a real-time database, a cloud-based alert system and a website (https://astro-colibri.com) as well as apps for iOS and Android as clients for users. The structure of Astro-COLIBRI is optimized for performance and reliability and exploits concepts such as multi-index database queries, a global content delivery network (CDN), and direct data streams from the database to the clients. Astro-COLIBRI evaluates incoming VOEvent messages of astronomical observations in real time, filters them by user-specified criteria and puts them into their MWL and MM context. The clients provide a graphical representation with an easy to grasp summary of the relevant data to allow for the fast identification of interesting phenomena and provides an assessment of observing conditions at a large selection of observatories around the world. We here summarize the key features of Astro-COLIBRI, the architecture and used data resources. We specifically provide examples for applications and use cases. Focussing on the high-energy domain, we showcase how Astro-COLIBRI facilitates the search for high-energy gamma-ray counterparts to high-energy neutrinos and scheduling of follow-up observations of a large variety of transient phenomena like gamma-ray bursts, gravitational waves, TDEs, FRBs, and others.
The Baikal-GVD deep underwater neutrino experiment participates in the international multi-messenger program on discovering the astrophysical sources of high energy fluxes of cosmic particles, while being at the stage of deployment with a gradual inc rease of its effective volume to the scale of a cubic kilometer. In April 2021 the effective volume of the detector has been reached 0.4 km3 for cascade events with energy above 100 TeV generated by neutrino interactions in Lake Baikal. The alarm system in real-time monitoring of the celestial sphere was launched at the beginning of 2021, that allows to form the alerts of two ranks like muon neutrino and VHE cascade. Recent results of fast follow-up searches for coincidences of Baikal-GVD high energy cascades with ANTARES/TAToO high energy neutrino alerts and IceCube GCN messages will be presented, as well as preliminary results of searches for high energy neutrinos in coincidence with the magnetar SGR 1935+2154 activity in period of radio and gamma burst in 2020.
177 - E. A. Huerta , Zhizhen Zhao 2021
We live in momentous times. The science community is empowered with an arsenal of cosmic messengers to study the Universe in unprecedented detail. Gravitational waves, electromagnetic waves, neutrinos and cosmic rays cover a wide range of wavelengths and time scales. Combining and processing these datasets that vary in volume, speed and dimensionality requires new modes of instrument coordination, funding and international collaboration with a specialized human and technological infrastructure. In tandem with the advent of large-scale scientific facilities, the last decade has experienced an unprecedented transformation in computing and signal processing algorithms. The combination of graphics processing units, deep learning, and the availability of open source, high-quality datasets, have powered the rise of artificial intelligence. This digital revolution now powers a multi-billion dollar industry, with far-reaching implications in technology and society. In this chapter we describe pioneering efforts to adapt artificial intelligence algorithms to address computational grand challenges in Multi-Messenger Astrophysics. We review the rapid evolution of these disruptive algorithms, from the first class of algorithms introduced in early 2017, to the sophisticated algorithms that now incorporate domain expertise in their architectural design and optimization schemes. We discuss the importance of scientific visualization and extreme-scale computing in reducing time-to-insight and obtaining new knowledge from the interplay between models and data.
Multi-messenger astrophysics is becoming a major avenue to explore the Universe, with the potential to span a vast range of redshifts. The growing synergies between different probes is opening new frontiers, which promise profound insights into sever al aspects of fundamental physics and cosmology. In this context, THESEUS will play a central role during the 2030s in detecting and localizing the electromagnetic counterparts of gravitational wave and neutrino sources that the unprecedented sensitivity of next generation detectors will discover at much higher rates than the present. Here, we review the most important target signals from multi-messenger sources that THESEUS will be able to detect and characterize, discussing detection rate expectations and scientific impact.
This report provides an overview of recent work that harnesses the Big Data Revolution and Large Scale Computing to address grand computational challenges in Multi-Messenger Astrophysics, with a particular emphasis on real-time discovery campaigns. A cknowledging the transdisciplinary nature of Multi-Messenger Astrophysics, this document has been prepared by members of the physics, astronomy, computer science, data science, software and cyberinfrastructure communities who attended the NSF-, DOE- and NVIDIA-funded Deep Learning for Multi-Messenger Astrophysics: Real-time Discovery at Scale workshop, hosted at the National Center for Supercomputing Applications, October 17-19, 2018. Highlights of this report include unanimous agreement that it is critical to accelerate the development and deployment of novel, signal-processing algorithms that use the synergy between artificial intelligence (AI) and high performance computing to maximize the potential for scientific discovery with Multi-Messenger Astrophysics. We discuss key aspects to realize this endeavor, namely (i) the design and exploitation of scalable and computationally efficient AI algorithms for Multi-Messenger Astrophysics; (ii) cyberinfrastructure requirements to numerically simulate astrophysical sources, and to process and interpret Multi-Messenger Astrophysics data; (iii) management of gravitational wave detections and triggers to enable electromagnetic and astro-particle follow-ups; (iv) a vision to harness future developments of machine and deep learning and cyberinfrastructure resources to cope with the scale of discovery in the Big Data Era; (v) and the need to build a community that brings domain experts together with data scientists on equal footing to maximize and accelerate discovery in the nascent field of Multi-Messenger Astrophysics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا