ﻻ يوجد ملخص باللغة العربية
Boundaries constitute a rich playground for quantum many-body systems because they can lead to novel degrees of freedom such as protected boundary states in topological phases. Here, we study the groundstate of integer quantum Hall systems in the presence of boundaries through the reduced density matrix of a spatial region. We work in the lowest Landau level and choose our region to intersect the boundary at arbitrary angles. The entanglement entropy (EE) contains a logarithmic contribution coming from the chiral edge modes, and matches the corresponding conformal field theory prediction. We uncover an additional contribution due to the boundary corners. We characterize the angle-dependence of this boundary corner term, and compare it to the bulk corner EE. We further analyze the spatial structure of entanglement via the eigenstates associated with the reduced density matrix, and construct a spatially-resolved EE. The influence of the physical boundary and the regions geometry on the reduced density matrix is thus clarified. Finally, we discuss the implications of our findings for other topological phases, as well as quantum critical systems such as conformal field theories in 2 spatial dimensions.
We study the quantum entanglement structure of integer quantum Hall states via the reduced density matrix of spatial subregions. In particular, we examine the eigenstates, spectrum and entanglement entropy (EE) of the density matrix for various groun
A highly non-thermal electron distribution is generated when quantum Hall edge states originating from sources at different potentials meet at a quantum point contact. The relaxation of this distribution to a stationary form as a function of distance
We study equilibration of quantum Hall edge states at integer filling factors, motivated by experiments involving point contacts at finite bias. Idealising the experimental situation and extending the notion of a quantum quench, we consider time evol
We propose a general mechanism for renormalization of the tunneling exponents in edge states of the fractional quantum Hall effect. Mutual effects of the coupling with out-of-equilibrium 1/f noise and dissipation are considered both for the Laughlin
We report an unexpected sharp peak in the temperature dependence of the magnetoresistance of the reentrant integer quantum Hall states in the second Landau level. This peak defines the onset temperature of these states. We find that in different spin