ﻻ يوجد ملخص باللغة العربية
Artificial crystals synthesized by atomic-scale epitaxy provides the ability to control the dimensions of the quantum phases and associated phase transitions via precise thickness modulation. In particular, reduction in dimensionality via quantized control of atomic layers is a powerful approach to revealing hidden electronic and magnetic phases. Here, we demonstrate a dimensionality-controlled and induced metal-insulator transition (MIT) in atomically designed superlattices by synthesizing a genuine two dimensional (2D) SrRuO3 crystal with highly suppressed charge transfer. The tendency to ferromagnetically align the spins in SrRuO3 layer diminishes in 2D as the interlayer exchange interaction vanishes, accompanying the 2D localization of electrons. Furthermore, electronic and magnetic instabilities in the two SrRuO3 unit cell layers induce a thermally-driven MIT along with a metamagnetic transition.
A sizable transverse thermoelectric coefficient N , large to the extent that it potentially serves applications, is predicted to arise, by means of first-principles calculations, in a Skyrmion crystal assumed on EuO monolayer where carrier electrons
Layered magnetic transition-metal thiophosphate NiPS3 has unique two-dimensional (2D) magnetic properties and electronic behavior. The electronic band structure and corresponding magnetic state are expected to sensitive to the interlayer interaction,
Local configurational disorder can have a dominating role in the formation of macroscopic functional responses in strongly correlated materials. Here, we use entropy-stabilization synthesis to create single crystal epitaxial ABO3 perovskite thin film
High-Tc superconductivity in cuprates is generally believed to arise from carrier doping an antiferromagnetic Mott (AFM) insulator. Theoretical proposals and emerging experimental evidence suggest that this process leads to the formation of intriguin
We report on the transport characterization in dark and under light irradiation of three different interfaces: LaAlO3/SrTiO3, LaGaO3/SrTiO3, and the novel NdGaO3/SrTiO3 heterostructure. All of them share a perovskite structure, an insulating nature o