ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic multicomponent topology optimization for additive manufacturing with build orientation design and stress-constrained interfaces

92   0   0.0 ( 0 )
 نشر من قبل Yuqing Zhou
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a multicomponent topology optimization method for designing structures assembled from additively-manufactured components, considering anisotropic material behavior for each component due to its build orientation, distinct material behavior and stress constraint at component interfaces (i.e., joints). Based upon the multicomponent topology optimization (MTO) framework, the simultaneous optimization of structural topology, its partitioning, and the build orientations of each component is achieved, which maximizes an assembly-level structural stiffness performance subject to maximum stress constraints at component interfaces. The build orientations of each component are modeled by its orientation tensor that avoids numerical instability experienced by the conventional angular representation. A new joint model is introduced at component interfaces, which enables the identification of the interface location, the specification of a distinct material tensor, and imposing maximum stress constraints during optimization. Both 2D and 3D numerical examples are presented to illustrate the effect of the build orientation anisotropy and the component interface behavior on the resulting multicomponent assemblies.



قيم البحث

اقرأ أيضاً

In the industrial practice, additive manufacturing processes are often followed by post-processing operations such as subtractive machining, milling, etc. to achieve the desired surface quality and dimensional accuracy. Hence, a given part must be 3D printed with extra material to enable such finishing phase. This combined additive/subtractive technique can be optimized to reduce manufacturing costs by saving printing time and reducing material and energy usage. In this work, a numerical methodology based on parametric shape optimization is proposed for optimizing the thickness of the extra material, allowing for minimal machining operations while ensuring the finishing requirements. Moreover, the proposed approach is complemented by a novel algorithm for generating inner structures leading to reduced distortion and improved weight reduction. The computational effort induced by classical constrained optimization methods is alleviated by replacing both the objective and constraint functions by their sparse-grid surrogates. Numerical results showcase the effectiveness of the proposed approach.
The optimization of porous infill structures via local volume constraints has become a popular approach in topology optimization. In some design settings, however, the iterative optimization process converges only slowly, or not at all even after sev eral hundreds or thousands of iterations. This leads to regions in which a distinct binary design is difficult to achieve. Interpreting intermediate density values by applying a threshold results in large solid or void regions, leading to sub-optimal structures. We find that this convergence issue relates to the topology of the stress tensor field that is simulated when applying the same external forces on the solid design domain. In particular, low convergence is observed in regions around so-called trisector degenerate points. Based on this observation, we propose an automatic initialization process that prescribes the topological skeleton of the stress field into the material field as solid simulation elements. These elements guide the material deposition around the degenerate points, but can also be remodelled or removed during the optimization. We demonstrate significantly improved convergence rates in a number of use cases with complex stress topologies. The improved convergence is demonstrated for infill optimization under homogeneous as well as spatially varying local volume constraints.
This paper presents a new conditional GAN (named convex relaxing CGAN or crCGAN) to replicate the conventional constrained topology optimization algorithms in an extremely effective and efficient process. The proposed crCGAN consists of a generator a nd a discriminator, both of which are deep convolutional neural networks (CNN) and the topology design constraint can be conditionally set to both the generator and discriminator. In order to improve the training efficiency and accuracy due to the dependency between the training images and the condition, a variety of crCGAN formulation are introduced to relax the non-convex design space. These new formulations were evaluated and validated via a series of comprehensive experiments. Moreover, a minibatch discrimination technique was introduced in the crCGAN training process to stabilize the convergence and avoid the mode collapse problems. Additional verifications were conducted using the state-of-the-art MNIST digits and CIFAR-10 images conditioned by class labels. The experimental evaluations clearly reveal that the new objective formulation with the minibatch discrimination training provides not only the accuracy but also the consistency of the designs.
Bayesian optimization (BO) is an approach to globally optimizing black-box objective functions that are expensive to evaluate. BO-powered experimental design has found wide application in materials science, chemistry, experimental physics, drug devel opment, etc. This work aims to bring attention to the benefits of applying BO in designing experiments and to provide a BO manual, covering both methodology and software, for the convenience of anyone who wants to apply or learn BO. In particular, we briefly explain the BO technique, review all the applications of BO in additive manufacturing, compare and exemplify the features of different open BO libraries, unlock new potential applications of BO to other types of data (e.g., preferential output). This article is aimed at readers with some understanding of Bayesian methods, but not necessarily with knowledge of additive manufacturing; the software performance overview and implementation instructions are instrumental for any experimental-design practitioner. Moreover, our review in the field of additive manufacturing highlights the current knowledge and technological trends of BO.
This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا