ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a new method to characterize the temporal structure of arbitrary optical laser pulses with low pulse energies. This approach is based on strong field photoelectron holography with the glory rescattering effect as the underlying mechanism in the near-forward direction. Utilizing the subfemtosecond glory rescattering process as a fast temporal gate to sample the unknown light pulse, the time-dependent vectorial electric field can be retrieved from the streaking photoelectron momentum spectra. Our method avoids the challenging task of generation or manipulation of attosecond pulses and signifies important progress in arbitrary optical waveform characterization.
An electrical pulse E(t) is completely defined by its time-dependent amplitude and polarisation direction. For optical pulses the manipulation and characterisation of the light polarisation state is fundamental due to its relevance in several scienti
Nonlinear optical generation has been a well-established way to realize frequency conversion in nonlinear optics, whereas previous studies were just focusing on the scalar light fields. Here we report a concise yet efficient experiment to realize fre
In conditions where the interaction betweeen an atom and a short high-frequency extreme ultraviolet laser pulse is a perturbation, we show that a simple theoretical approach, based on Coulomb-Volkov-type states, can make reliable predictions for ioni
Collisions of antiprotons with He-, Ne-, Ni-like, bare, and neutral uranium are studied theoretically for scattering angles close to 180$^{circ}$ and antiproton energies with the interval 100 eV -- 10 keV. We investigate the Coulomb glory effect whic
Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined w