ﻻ يوجد ملخص باللغة العربية
Absence of nearby light sources while capturing an image will degrade the visibility and quality of the captured image, making computer vision tasks difficult. In this paper, a color-wise attention network (CWAN) is proposed for low-light image enhancement based on convolutional neural networks. Motivated by the human visual system when looking at dark images, CWAN learns an end-to-end mapping between low-light and enhanced images while searching for any useful color cues in the low-light image to aid in the color enhancement process. Once these regions are identified, CWAN attention will be mainly focused to synthesize these local regions, as well as the global image. Both quantitative and qualitative experiments on challenging datasets demonstrate the advantages of our method in comparison with state-of-the-art methods.
The captured images under low light conditions often suffer insufficient brightness and notorious noise. Hence, low-light image enhancement is a key challenging task in computer vision. A variety of methods have been proposed for this task, but these
In this work, we aim to learn an unpaired image enhancement model, which can enrich low-quality images with the characteristics of high-quality images provided by users. We propose a quality attention generative adversarial network (QAGAN) trained on
To enhance low-light images to normally-exposed ones is highly ill-posed, namely that the mapping relationship between them is one-to-many. Previous works based on the pixel-wise reconstruction losses and deterministic processes fail to capture the c
Images obtained in real-world low-light conditions are not only low in brightness, but they also suffer from many other types of degradation, such as color bias, unknown noise, detail loss and halo artifacts. In this paper, we propose a very fast dee
Recently, deep convolutional neural network (CNN) have been widely used in image restoration and obtained great success. However, most of existing methods are limited to local receptive field and equal treatment of different types of information. Bes