ترغب بنشر مسار تعليمي؟ اضغط هنا

Color-wise Attention Network for Low-light Image Enhancement

145   0   0.0 ( 0 )
 نشر من قبل Yousef Atoum
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Absence of nearby light sources while capturing an image will degrade the visibility and quality of the captured image, making computer vision tasks difficult. In this paper, a color-wise attention network (CWAN) is proposed for low-light image enhancement based on convolutional neural networks. Motivated by the human visual system when looking at dark images, CWAN learns an end-to-end mapping between low-light and enhanced images while searching for any useful color cues in the low-light image to aid in the color enhancement process. Once these regions are identified, CWAN attention will be mainly focused to synthesize these local regions, as well as the global image. Both quantitative and qualitative experiments on challenging datasets demonstrate the advantages of our method in comparison with state-of-the-art methods.



قيم البحث

اقرأ أيضاً

246 - Cheng Zhang , Qingsen Yan , Yu zhu 2020
The captured images under low light conditions often suffer insufficient brightness and notorious noise. Hence, low-light image enhancement is a key challenging task in computer vision. A variety of methods have been proposed for this task, but these methods often failed in an extreme low-light environment and amplified the underlying noise in the input image. To address such a difficult problem, this paper presents a novel attention-based neural network to generate high-quality enhanced low-light images from the raw sensor data. Specifically, we first employ attention strategy (i.e. channel attention and spatial attention modules) to suppress undesired chromatic aberration and noise. The channel attention module guides the network to refine redundant colour features. The spatial attention module focuses on denoising by taking advantage of the non-local correlation in the image. Furthermore, we propose a new pooling layer, called inverted shuffle layer, which adaptively selects useful information from previous features. Extensive experiments demonstrate the superiority of the proposed network in terms of suppressing the chromatic aberration and noise artifacts in enhancement, especially when the low-light image has severe noise.
In this work, we aim to learn an unpaired image enhancement model, which can enrich low-quality images with the characteristics of high-quality images provided by users. We propose a quality attention generative adversarial network (QAGAN) trained on unpaired data based on the bidirectional Generative Adversarial Network (GAN) embedded with a quality attention module (QAM). The key novelty of the proposed QAGAN lies in the injected QAM for the generator such that it learns domain-relevant quality attention directly from the two domains. More specifically, the proposed QAM allows the generator to effectively select semantic-related characteristics from the spatial-wise and adaptively incorporate style-related attributes from the channel-wise, respectively. Therefore, in our proposed QAGAN, not only discriminators but also the generator can directly access both domains which significantly facilitates the generator to learn the mapping function. Extensive experimental results show that, compared with the state-of-the-art methods based on unpaired learning, our proposed method achieves better performance in both objective and subjective evaluations.
To enhance low-light images to normally-exposed ones is highly ill-posed, namely that the mapping relationship between them is one-to-many. Previous works based on the pixel-wise reconstruction losses and deterministic processes fail to capture the c omplex conditional distribution of normally exposed images, which results in improper brightness, residual noise, and artifacts. In this paper, we investigate to model this one-to-many relationship via a proposed normalizing flow model. An invertible network that takes the low-light images/features as the condition and learns to map the distribution of normally exposed images into a Gaussian distribution. In this way, the conditional distribution of the normally exposed images can be well modeled, and the enhancement process, i.e., the other inference direction of the invertible network, is equivalent to being constrained by a loss function that better describes the manifold structure of natural images during the training. The experimental results on the existing benchmark datasets show our method achieves better quantitative and qualitative results, obtaining better-exposed illumination, less noise and artifact, and richer colors.
Images obtained in real-world low-light conditions are not only low in brightness, but they also suffer from many other types of degradation, such as color bias, unknown noise, detail loss and halo artifacts. In this paper, we propose a very fast dee p learning framework called Bringing the Lightness (denoted as BLNet) that consists of two U-Nets with a series of well-designed loss functions to tackle all of the above degradations. Based on Retinex Theory, the decomposition net in our model can decompose low-light images into reflectance and illumination and remove noise in the reflectance during the decomposition phase. We propose a Noise and Color Bias Control module (NCBC Module) that contains a convolutional neural network and two loss functions (noise loss and color loss). This module is only used to calculate the loss functions during the training phase, so our method is very fast during the test phase. This module can smooth the reflectance to achieve the purpose of noise removal while preserving details and edge information and controlling color bias. We propose a network that can be trained to learn the mapping between low-light and normal-light illumination and enhance the brightness of images taken in low-light illumination. We train and evaluate the performance of our proposed model over the real-world Low-Light (LOL) dataset), and we also test our model over several other frequently used datasets (LIME, DICM and MEF datasets). We conduct extensive experiments to demonstrate that our approach achieves a promising effect with good rubustness and generalization and outperforms many other state-of-the-art methods qualitatively and quantitatively. Our method achieves high speed because we use loss functions instead of introducing additional denoisers for noise removal and color correction. The code and model are available at https://github.com/weixinxu666/BLNet.
Recently, deep convolutional neural network (CNN) have been widely used in image restoration and obtained great success. However, most of existing methods are limited to local receptive field and equal treatment of different types of information. Bes ides, existing methods always use a multi-supervised method to aggregate different feature maps, which can not effectively aggregate hierarchical feature information. To address these issues, we propose an attention cube network (A-CubeNet) for image restoration for more powerful feature expression and feature correlation learning. Specifically, we design a novel attention mechanism from three dimensions, namely spatial dimension, channel-wise dimension and hierarchical dimension. The adaptive spatial attention branch (ASAB) and the adaptive channel attention branch (ACAB) constitute the adaptive dual attention module (ADAM), which can capture the long-range spatial and channel-wise contextual information to expand the receptive field and distinguish different types of information for more effective feature representations. Furthermore, the adaptive hierarchical attention module (AHAM) can capture the long-range hierarchical contextual information to flexibly aggregate different feature maps by weights depending on the global context. The ADAM and AHAM cooperate to form an attention in attention structure, which means AHAMs inputs are enhanced by ASAB and ACAB. Experiments demonstrate the superiority of our method over state-of-the-art image restoration methods in both quantitative comparison and visual analysis. Code is available at https://github.com/YCHang686/A-CubeNet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا