ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Wedge Cross Sections Require Tripartite Entanglement

176   0   0.0 ( 0 )
 نشر من قبل Pratik Rath
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that holographic CFT states require a large amount of tripartite entanglement, in contrast to the conjecture that their entanglement is mostly bipartite. Our evidence is that this mostly-bipartite conjecture is in sharp conflict with two well-supported conjectures about the entanglement wedge cross section surface $E_W$. If $E_W$ is related to either the CFTs reflected entropy or its entanglement of purification, then those quantities can differ from the mutual information at $mathcal{O}(frac{1}{G_N})$. We prove that this implies holographic CFT states must have $mathcal{O}(frac{1}{G_N})$ amounts of tripartite entanglement. This proof involves a new Fannes-type inequality for the reflected entropy, which itself has many interesting applications.

قيم البحث

اقرأ أيضاً

We study the entanglement wedge cross-section (EWCS) in holographic Aether gravity theory, a gravity theory with Lorentz symmetry breaking meanwhile keeping the general covariance intact. We find that only a limited parameter space is allowed to obta in a black brane with positive Hawking temperature. Subject to these allowed parameter regions, we find that the EWCS could exhibit non-monotonic behaviors with system parameters. Meanwhile, the holographic entanglement entropy (HEE), and the corresponding mutual information (MI), can only exhibit monotonic behaviors. These phenomena suggest that the EWCS could capture much more rich content of the entanglement than that of the HEE and the MI. The role of the Lorentz violation in determining the behaviors of quantum information-related quantities is also analyzed.
In the holographic correspondence, subregion duality posits that knowledge of the mixed state of a finite spacelike region of the boundary theory allows full reconstruction of a specific region of the bulk, known as the entanglement wedge. This state ment has been proven for local bulk operators. In this paper, specializing first for simplicity to a Rindler wedge of AdS$_3$, we find that generic curves within the wedge are in fact not fully reconstructible with entanglement entropies in the corresponding boundary region, even after using the most general variant of hole-ography, which was recently shown to suffice for reconstruction of arbitrary spacelike curves in the Poincare patch. This limitation is an analog of the familiar phenomenon of entanglement shadows, which we call entanglement shade. We overcome it by showing that the information about the nonreconstructible curve segments is encoded in a slight generalization of the concept of entanglement of purification, whose holographic dual has been discussed very recently. We introduce the notion of differential purification, and demonstrate that, in combination with differential entropy, it enables the complete reconstruction of all spacelike curves within an arbitrary entanglement wedge in any 3-dimensional bulk geometry.
We study the mixed state entanglement properties in two holographic axion models by examining the behavior of the entanglement wedge minimum cross section (EWCS), and comparing it with the holographic entanglement entropy (HEE) and mutual information (MI). We find that the behavior of HEE, MI and EWCS with Hawking temperature is monotonic, while the behavior with the axion parameter $k$ is more rich, which depends on the size of the configuration and the values of the other two parameters. Interestingly, the EWCS monotonically increases with the coupling constant $kappa$ between the axion field and the Maxwell field, while HEE and MI can be non-monotonic. It suggests that the EWCS, as a mixed state entanglement measure, captures distinct degrees of freedom from the HEE and MI indeed. We also provide analytical understandings for most of the numerical results.
In this paper, we probe the effect of noncommutativity on the entanglement of purification in the holographic set up. We followed a systematic analytical approach in order to compute the holographic entanglement entropy corresponding to a strip like subsystem. The entropic c-function has been computed and the effect of noncommutativity has been noted. We then move on to compute the minimal cross-section area of the entanglement wedge by considering two disjoint subsystems. On the basis of $E_P = E_W$ duality, this leads to the holographic computation of the entanglement of purification. The correlation between two subsystems, namely, the holographic mutual information has also been computed. Finally we consider a black hole geometry with a noncommutative parameter and study the influence of both noncommutativity and finite temperature on the entanglement of purification and mutual information.
We construct an infinite-dimensional analog of the HaPPY code as a growing series of stabilizer codes defined respective to their Hilbert spaces. The Hilbert spaces are related by isometric maps, which we define explicitly. We construct a Hamiltonian that is compatible with the infinite-dimensional HaPPY code and further study the stabilizer of our code, which has an inherent fractal structure. We use this result to study the dynamics of the code and map a nontrivial bulk Hamiltonian to the boundary. We find that the image of the mapping is scale invariant, but does not create any long-range entanglement in the boundary, therefore failing to reproduce the features of a CFT. This result shows the limits of the HaPPY code as a model of the AdS/CFT correspondence, but also hints that the relevance of quantum error correction in quantum gravity may not be limited to the CFT context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا