ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon Efficiency Limits in the Presence of Background Noise

99   0   0.0 ( 0 )
 نشر من قبل Konrad Banaszek
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify theoretical limits on the photon information efficiency (PIE) of a deep-space optical communication link constrained by the average signal power and operated in the presence of background noise. The ability to implement a scalable modulation format, Geiger-type direct photon counting detection, and complete decoding of detection events are assumed in the analysis. The maximum attainable PIE is effectively determined by the background noise strength and it exhibits a weak, logarithmic dependence on the detected number of background photons per temporal slot.

قيم البحث

اقرأ أيضاً

When a photon interferes with itself while traversing a Mach-Zehnder inteferometer, the output port where it emerges is influenced by the phase difference between the interferometer arms. This allows for highly precise estimation of the path length d ifference (delay) but is extremely sensitive to phase noise. By contrast, a delay between the arms of the two-photon Hong-Ou-Mandel interferometer directly affects the relative indistinguishability of the photon pair, affecting the rate of recorded coincidences. This likewise allows for delay estimation; notably less precise but with the advantage of being less sensitive to perturbations of the photons phase. Focusing on two-photon input states, we here investigate to what degree of noise Mach-Zehnder interferometry retains its edge over Hong-Ou-Mandel interferometry. We also explore the competing benefits of different two-photon inputs for a Mach-Zehnder interferometer, and under what parameter regimes each input performs best.
We study the simplest optomechanical system in the presence of laser phase noise using the covariance matrix formalism. We show that the destructive effect of the phase noise is especially strong in the bistable regime. This explains why ground state cooling is still possible in the presence of phase noise, as it happens far away from the bistable regime. On the other hand, the optomechanical entanglement is strongly affected by phase noise.
We analyze the optimal state, as given by Berry and Wiseman [Phys. Rev. Lett {bf 85}, 5098, (2000)], under the canonical phase measurement in the presence of photon loss. The model of photon loss is a generic fictitious beam splitter, and we present the full density matrix calculations, which are more direct and do not involve any approximations. We find for a given amount of loss the upper bound for the input photon number that yields a sub-shot noise estimate.
86 - R. Ozeri , C. Langer , J. D. Jost 2005
The coherence of a hyperfine-state superposition of a trapped $^{9}$Be$^+$ ion in the presence of off-resonant light is experimentally studied. It is shown that Rayleigh elastic scattering of photons that does not change state populations also does n ot affect coherence. Coherence times exceeding the average scattering time of 19 photons are observed. This result implies that, with sufficient control over its parameters, laser light can be used to manipulate hyperfine-state superpositions with very little decoherence.
261 - E. Torrontegui , R. Kosloff 2013
A reciprocating quantum refrigerator is analyzed with the intention to study the limitations imposed by external noise. In particular we focus on the behavior of the refrigerator when it approaches the absolute zero. The cooling cycle is based on the Otto cycle with a working medium constituted by an ensemble of non interacting harmonic oscillators. The compression and expansion segments are generated by changing an external parameter in the Hamiltonian. In this case the force constant of the harmonic oscillators $m omega^2$ is modified from an initial to a final value. As a result, the kinetic and potential energy of the system do not commute causing frictional losses. By proper choice of scheduling function $omega(t)$ frictionless solutions can be obtained in the noiseless case. We examine the performance of a refrigerator subject to noise. By expanding from the adiabatic limit we find that the external noise, gaussian phase and amplitude noises, reduce the amount of heat that can be extracted but nevertheless the zero temperature can be approached.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا