ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleation kinetics in drying sodium nitrate aerosols

102   0   0.0 ( 0 )
 نشر من قبل Joshua Robinson
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantitative understanding of the evaporative drying kinetics and nucleation rates of aqueous based aerosol droplets is important for a wide range of applications, from atmospheric aerosols to industrial processes such as spray drying. Here, we introduce a numerical model for interpreting measurements of the evaporation rate and phase change of drying free droplets made using a single particle approach. We explore the evaporation of aqueous sodium chloride and sodium nitrate solution droplets. Although the chloride salt is observed to reproducibly crystallise at all drying rates, the nitrate salt solution can lose virtually all of its water content without crystallising. The latter phenomenon has implications for our understanding of the competition between the drying rate and nucleation kinetics in these two systems. The nucleation model is used in combination with the measurements of crystallisation events to infer nucleation rates at varying equilibrium state points, showing that classical nucleation theory provides a good description of the crystallisation of the chloride salt but not the nitrate salt solution droplets. The reasons for this difference are considered.

قيم البحث

اقرأ أيضاً

184 - Lucas Goehring , Joaquim Li , 2016
Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarise the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients around a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle x-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities -- shear-banding and fracture -- can be controlled.
A widely spread method of crystal preparation is to precipitate it from a supersaturated solution. In such a process, control of solution concentration is of paramount importance. Nucleation process, polymorph selection, and crystal habits depend cru cially on this thermodynamic parameter. When performing simulations in the canonical ensemble as the crystalline phase is deposited the solution is depleted of solutes. This unavoidable modification of the thermodynamic conditions leads to significant artifact. Here we adopt the idea of the constant chemical potential molecular dynamics approach of Perego et al. [J. Chem. Phys. 2015, 142, 144113] to the study of nucleation. Our method allows determining the crystal nucleus size and nucleation rates at constant supersaturation. As an example we study the homogeneous nucleation of sodium chloride from its supersaturated aqueous solution.
In directionally-dried colloidal dispersions regular bands can appear behind the drying front, inclined at $pm45^circ$ to the drying line. Although these features have been noted to share visual similarities to shear bands in metal, no physical mecha nism for their formation has ever been suggested, until very recently. Here, through microscopy of silica and polystyrene dispersions, dried in Hele-Shaw cells, we demonstrate that the bands are indeed associated with local shear strains. We further show how the bands form, that they scale with the thickness of the drying layer, and that they are eliminated by the addition of salt to the drying dispersions. Finally, we reveal the origins of these bands in the compressive forces associated with drying, and show how they affect the optical properties (birefringence) of colloidal films and coatings.
We study how the dynamics of a drying front propagating through a porous medium are affected by small-scale correlations in material properties. For this, we first present drying experiments in micro-fluidic micro-models of porous media. Here, the fl uid pressures develop more intermittent dynamics as local correlations are added to the structure of the pore spaces. We also consider this problem numerically, using a model of invasion percolation with trapping, and find that there is a crossover in invasion behaviour associated with the length-scale of the disorder in the system. The critical exponents associated with large enough events are similar to the classic invasion percolation problem, whereas the addition of a finite correlation length significantly affects the exponent values of avalanches and bursts, up to some characteristic size. This implies that the even a weak local structure can interfere with the universality of invasion percolation phenomena.
Shining a tightly-focused but low-powered laser beam on an absorber dispersed in a biological fluid gives rise to spectacular growth of dendritic patterns. These result from localized drying of the fluid because of efficient absorption and conduction of optical energy by the absorber. We have carried out experiments in several biologically relevant fluids and have analyzed patterns generated by different types of absorbers. We observe that the growth velocity of branches in the dendritic patterns can decrease below the value expected for natural drying.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا