ﻻ يوجد ملخص باللغة العربية
We simulate a dense athermal suspension of soft particles sheared between hard walls of a prescribed roughness profile, using a method that fully accounts for the fluid mechanics of the solvent between the particles, and between the particles and the walls, as well as for the solid mechanics of changes in the particle shapes. We thus capture the widely observed phenomenon of elastohydrodynamic wall slip, in which the soft particles become deformed in shear and lift away from the wall slightly, leaving behind a thin lubricating solvent layer of high shear. For imposed stresses below the materials bulk yield stress, we show the observed wall slip to be dominated by this thin solvent layer. At higher stresses, it is augmented by an additional contribution arising from a fluidisation of the first few layers of particles near the wall. By systematically varying the roughness of the walls, we quantify a suppression of slip with increasing wall roughness. For smooth walls, slip radically changes the steady state bulk flow curve of shear stress as a function of shear rate, by conferring a branch of apparent (slip-induced) flow even for $sigma<sigma_y$, as seen experimentally. We also elucidate the effects of slip on the dynamics of yielding following the imposition of a constant shear stress, characterising the timescales at which bulk yielding arises, and at which slip first sets in.
We present a comprehensive study of the slip and flow of concentrated colloidal suspensions using cone-plate rheometry and simultaneous confocal imaging. In the colloidal glass regime, for smooth, non-stick walls, the solid nature of the suspension c
We image the flow of a nearly random close packed, hard-sphere colloidal suspension (a `paste) in a square capillary using confocal microscopy. The flow consists of a `plug in the center while shear occurs localized adjacent to the channel walls, rem
The motion of soft-glassy materials (SGM) in a confined geometry is strongly impacted by surface roughness. However, the effect of the spatial distribution of the roughness remains poorly understood from a more quantitative viewpoint. Here we present
An experimental system has been found recently, a coagulated CaCO3 suspension system, which shows very variable yield behaviour depending upon how it is tested and, specifically, at what rate it is sheared. At Peclet numbers Pe > 1 it behaves as a si
Yielding behavior is well known in attractive colloidal suspensions. Adhesive non-Brownian suspensions, in which the interparticle bonds are due to finite-size contacts, also show yielding behavior. We use a combination of steady-state, oscillatory a