ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronization and estimation of gravity-induced time difference for quantum clocks

76   0   0.0 ( 0 )
 نشر من قبل Jieci Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been reported [textit{PNAS} textbf{114}, 2303 (2017)] that, under an operational definition of time, quantum clocks would get entangled through gravitational effects. Here we study an alternative scenario: the clocks have different masses and energy gaps, which would produce time difference via gravitational interaction. The proposal of quantum clock synchronization for the gravity-induced time difference is discussed. We illustrate how the stability of measurement probability in the quantum clock synchronization proposal is influenced by the gravitational interaction induced by the clock themselves. It is found that the precision of clock synchronization depends on the energy gaps of the clocks and the improvement of precision in quantum metrology is in fact an indicator of entanglement generation. We also present the quantum enhanced estimation of time difference and find that the quantum Fisher information is very sensitive to the distance between the clocks.



قيم البحث

اقرأ أيضاً

The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The resul ts obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.
The notion of time is given a different footing in Quantum Mechanics and General Relativity, treated as a parameter in the former and being an observer dependent property in the later. From a operational point of view time is simply the correlation b etween a system and a clock, where an idealized clock can be modelled as a two level systems. We investigate the dynamics of clocks interacting gravitationally by treating the gravitational interaction as a classical information channel. In particular, we focus on the decoherence rates and temporal resolution of arrays of $N$ clocks showing how the minimum dephasing rate scales with $N$, and the spatial configuration. Furthermore, we consider the gravitational redshift between a clock and massive particle and show that a classical channel model of gravity predicts a finite dephasing rate from the non-local interaction. In our model we obtain a fundamental limitation in time accuracy that is intrinsic to each clock.
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to sa y that there are no feasible ideas yet to test the quantum coherent behaviour of gravity directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple correlation measurements between two spins: one embedded in each test mass. Fundamentally, the above entanglement is shown to certify the presence of non-zero off-diagonal terms in the coherent state basis of the gravitational field modes.
Real clocks are not perfect. This must have an effect in our predictions for the behaviour of a quantum system, an effect for which we present a unified description encompassing several previous proposals. We study the relevance of clock errors in th e Zeno effect, and find that generically no Zeno effect can be present (in such a way that there is no contradiction with currently available experimental data). We further observe that, within the class of stochasticities in time addressed here, there is no modification in emission lineshapes.
Time plays a fundamental role in our ability to make sense of the physical laws in the world around us. The nature of time has puzzled people -- from the ancient Greeks to the present day -- resulting in a long running debate between philosophers and physicists alike to whether time needs change to exist (the so-called relatival theory), or whether time flows regardless of change (the so-called substantival theory). One way to decide between the two is to attempt to measure the flow of time with a stationary clock, since if time were substantival, the flow of time would manifest itself in the experiment. Alas, conventional wisdom suggests that in order for a clock to function, it cannot be a static object, thus rendering this experiment seemingly impossible. We show, counter-intuitively, that a quantum clock can measure the passage of time even while being switched off, lending support for the substantival theory of time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا