ﻻ يوجد ملخص باللغة العربية
Recently, superconductivity was discovered at very low densities in slightly misaligned graphene multilayers. Surprisingly, despite extremely low electronic density (about $10^{-4}$ electrons per unit cell), these systems realize strong-coupling superconductivity, with the transition temperature being a large fraction of the Fermi energy ($T_csim 0.1 epsilon_F$). Here we propose a qualitative explanation for this remarkable phenomenon, highlighting similarities and qualitative differences with the conventional uniform high-density superconductivity. Most importantly, we find that periodic superimposed potential generically enhances local interactions relative to nonlocal (for instance, Coulomb) interactions. In addition, the density of states is enhanced as well, exponentially in modulation strength for low lying bands in some cases. Combination of these two effects makes moire systems natural intermediate or strong-coupled superconductors, with potential for very high transition temperatures.
The search for artificial topological superconductivity has been limited by the stringent conditions required for its emergence. As exemplified by the recent discoveries of various correlated electronic states in twisted van der Waals materials, moir
We study the quantum many-body instabilities of interacting electrons with SU(2)$times$SU(2) symmetry in spin and orbital degrees of freedom on the triangular lattice near van-Hove filling. Our work is motivated by effective models for the flat bands
It was recently suggested that the topology of magic-angle twisted bilayer graphenes (MATBG) flat bands could provide a novel mechanism for superconductivity distinct from both weakly-coupled BCS theory and the $d$-wave phenomenology of the high-$T_c
The search for a material platform for topological quantum computation has recently focused on unconventional superconductors. Such material systems, where the superconducting order parameter breaks a symmetry of the crystal point group, are capable
Actinide materials play a special role in condensed matter physics, spanning behaviours of itinerant d-electron and localized 4f-electron materials. An intermediate state, found notably in Pu-based materials whose 5f electrons are neither fully local