ترغب بنشر مسار تعليمي؟ اضغط هنا

Slicing the cool circumgalactic medium along the major-axis of a star-forming galaxy at $z = 0.7$

316   0   0.0 ( 0 )
 نشر من قبل Sebastian Lopez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spatially-resolved echelle spectroscopy of an intervening MgII-FeII-MgI absorption-line system detected at $z_{rm abs}=0.73379$ toward the giant gravitational arc PSZ1 G311.65-18.48. The absorbing gas is associated to an inclined disk-like star-forming galaxy, whose major axis is aligned with the two arc-segments reported here. We probe in absorption the galaxys extended disk continuously, at $approx 3$ kpc sampling, from its inner region out to $15times$ the optical radius. We detect strong ($W_0^{2796}>0.3$ r{A}) coherent absorption along $13$ independent positions at impact parameters $D=0$--$29$ kpc on one side of the galaxy, and no absorption at $D=28$--$57$ kpc on the opposite side (all de-lensed distances at $z_{rm abs}$). We show that: (1) the gas distribution is anisotropic; (2) $W_0^{2796}$, $W_0^{2600}$, $W_0^{2852}$, and the ratio $W_0^{2600}!/W_0^{2796}$, all anti-correlate with $D$; (3) the $W_0^{2796}$-$D$ relation is not cuspy and exhibits significantly less scatter than the quasar-absorber statistics; (4) the absorbing gas is co-rotating with the galaxy out to $D lesssim 20$ kpc, resembling a `flat rotation curve, but at $Dgtrsim 20$ kpc velocities decline below the expectations from a 3D disk-model extrapolated from the nebular [OII] emission. These signatures constitute unambiguous evidence for rotating extra-planar diffuse gas, possibly also undergoing enriched accretion at its edge. Arguably, we are witnessing some of the long-sought processes of the baryon cycle in a single distant galaxy expected to be representative of such phenomena.



قيم البحث

اقرأ أيضاً

The multi-phase circumgalactic medium (CGM) arises within the complex environment around a galaxy, or collection of galaxies, and possibly originates from a wide range of physical mechanisms. In this paper, we attempt to disentangle the origins of th ese multi-phase structures and present a detailed analysis of the quasar field Q0122-003 field using Keck/KCWI galaxy observations and HST/COS spectra probing the CGM. Our re-analysis of this field shows that there are two galaxies associated with the absorption. We have discovered a dwarf galaxy, G_27kpc ($M_{star}=10^{8.7}$ M$_{odot}$), at z=0.39863 that is 27 kpc from the quasar sightline. G_27kpc is only +21 km/s from a more massive ($M_{star}=10^{10.5}$ M$_{odot}$) star-forming galaxy, G_163kpc, at an impact parameter of 163 kpc. While G_163kpc is actively forming stars (SFR=6.9 M$_{odot}$ yr$^{-1}$), G_27kpc has a low star-formation rate (SFR=$0.08pm0.03$ M$_{odot}$ yr$^{-1}$) and star formation surface density ($Sigma_{SFR}=0.006$ M$_{odot}$ kpc$^{-2}$ yr$^{-1}$), implying no active outflows. By comparing galaxy SFRs, kinematics, masses and distances from the quasar sightline to the absorption kinematics, column densities and metallicities, we have inferred the following: (1) Part of the low-ionization phase has a metallicity and kinematics consistent with being accreted onto G_27kpc. (2) The remainder of the low ionization phase has metallicities and kinematics consistent with being intragroup gas being transferred from G_27kpc to G_163kpc. (3) The high ionization phase is consistent with being produced solely by outflows originating from the massive halo of G_163kpc. Our results demonstrate the complex nature of the multi-phase CGM, especially around galaxy groups, and that detailed case-by-case studies are critical for disentangling its origins.
In our current galaxy formation paradigm, high-redshift galaxies are predominantly fuelled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption ag ainst background sightlines within a galaxys virial radius, as optically thick Lyman-limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R_perp = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen [N(HI) = 10^(19.50 +/- 0.16) cm^-2] we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log10(Z / Zsolar) = -2.0 +/- 0.17, or (7-15) x 10^-3 solar. Furthermore, the narrow deuterium linewidth requires a cool temperature < 20,000 K. Given the striking similarities between this system and the predictions of simulations, we argue that it represents the direct detection of a high redshift cold-accretion stream. The low-metallicity gas cloud is a single component of an absorption system exhibiting a complex velocity, ionization, and enrichment structure. Two other components have metallicities > 0.1 solar, ten times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly-ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modelling are critical to accurately appraise the distribution of metals in the high-redshift CGM.
155 - Fakhri S. Zahedy 2015
We present multi-sightline absorption spectroscopy of cool gas around three lensing galaxies at z=0.4-0.7. These lenses have half-light radii r_e=2.6-8 kpc and stellar masses of log M*/Ms=10.9-11.4, and therefore resemble nearby passive elliptical ga laxies. The lensed QSO sightlines presented here occur at projected distances of d=3-15 kpc (or d~1-2 r_e) from the lensing galaxies, providing for the first time an opportunity to probe both interstellar gas at r~r_e and circumgalactic gas at larger radii r>>re of these distant quiescent galaxies. We observe distinct gas absorption properties among different lenses and among sightlines of individual lenses. Specifically, while the quadruple lens for HE0435-1223 shows no absorption features to very sensitive limits along all four sightlines, strong Mg II, Fe II, Mg I, and Ca II absorption transitions are detected along both sightlines near the double lens for HE0047-1756, and in one of the two sightlines near the double lens for HE1104-1805. The absorbers are resolved into 8-15 individual components with a line-of-sight velocity spread of dv~300-600 km/s. The large ionic column densities, log N>14, observed in two components suggest that these may be Lyman limit or damped Lya absorbers with a significant neutral hydrogen fraction. The majority of the absorbing components exhibit a uniform super solar Fe/Mg ratio with a scatter of <0.1 dex across the full dv range. Given a predominantly old stellar population in these lensing galaxies, we argue that the observed large velocity width and Fe-rich abundance pattern can be explained by SNe Ia enriched gas at radius r~r_e. We show that additional spatial constraints in line-of-sight velocity and relative abundance ratios afforded by a multi-sightline approach provide a powerful tool to resolve the origin of chemically-enriched cool gas in massive halos.
127 - N. Lehner , J.C. Howk , T.M. Tripp 2013
We assess the metal content of the cool (10^4 K) circumgalactic medium (CGM) about galaxies at z<1 using an H I-selected sample of 28 Lyman limit systems (LLS, defined here as absorbers with 16.2<log N(H I)<18.5) observed in absorption against backgr ound QSOs by the Cosmic Origins Spectrograph on-board the Hubble Space Telescope. The N(H I) selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N(H I) in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H]=-1.6 and -0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously-undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z<1 galaxies.
130 - A.L.R. Danielson 2010
We present an analysis of the molecular and atomic gas emission in the rest-frame far-infrared and sub-millimetre, from the lensed z=2.3 sub-millimetre galaxy SMM J2135-0102. We obtain very high signal-to-noise detections of 11 transitions from 3 spe cies and limits on a further 20 transitions from 9 species. We use the 12CO, [CI] and HCN line strengths to investigate the gas mass, kinematic structure and interstellar medium (ISM) chemistry, and find strong evidence for a two-phase medium comprising a hot, dense, luminous component and an underlying extended cool, low-excitation massive component. Employing photo-dissociation region models we show that on average the molecular gas is exposed to a UV radiation field that is ~1000 x more intense than the Milky Way, with star-forming regions having a characteristic density of n~10^4 /cm^3. These conditions are similar to those found in local ULIRGs and in the central regions of typical starburst galaxies, even though the star formation rate is far higher in this system. The 12CO spectral line energy distribution and line profiles give strong evidence that the system comprises multiple kinematic components with different conditions, including temperature, and line ratios suggestive of high cosmic ray flux within clouds. We show that, when integrated over the galaxy, the gas and star-formation surface densities appear to follow the Kennicutt-Schmidt relation, although when compared to high-resolution sub-mm imaging, our data suggest that this relation breaks down on scales of <100pc. By virtue of the lens amplification, these observations uncover a wealth of information on the star formation and ISM at z~2.3 at a level of detail that has only recently become possible at z<0.1, and show the potential physical properties that will be studied in unlensed galaxies when ALMA is in full operation. (Abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا